

Alaa Region III Student Conference April 2011

Nathan McKay and Duncan Miller

Overview

- Background
 - CubeSat technology
 - XSAS concept / history
 - Michigan NanoSat Pipeline
- Current XSAS Development
 - Mechanisms
 - Solar panels
 - Electrical Power System
- Future Work

CubeSat Background

- Standardized form of NanoSat
- CubeSat Specifications
 - Size: 1U = 10 cm x 10 cm x 10 cm
 - Mass: 1.33 kg per U
- Growing interest in CubeSats
 - Mostly on a university level
 - Some industry or government interest

- Cal Poly CP-1
 CubeSat
- Relatively low development & launch costs
- Major Problem: limited power generation restricts mission capabilities
 - Methods to increase power generation of major concern

XSAS - Concept

- Solution: use of deployable structures
 - 1U stowed array extends ≈1 meter
 - Increase power generation surface area
 - Provides gravity gradient stabilization
 - Capability for high gain antenna
- "Independent" of CubeSat
 - Well defined interface
- Capabilities
 - 20 Watt-hours average power
 - Typical 3U: 7 Watt-hours

XSAS - Past Development

- Conceptualized in MEng Program (2008-2009)
- Prototypes designed and fabricated for proof-of-concept demonstrations
- Small scale version tested in microgravity (2010)

XSAS - Microgravity Testing

- Tested a scaled down array due to safety restrictions by NASA
- Reliable deployment verified, XSAS extension characterized

Michigan NanoSat Pipeline

- Program established to sustain growth of small satellite projects within the University of Michigan
 - Heritage for XSAS
 - Mission prospects

Current Development

- Third design iteration of extending array complete
 - Mechanisms redesigned based on lessons learned
 - Improved design stows to size of 1U
 - New design considerations: solar cell wiring, launch survival
- Preliminary design of electrical power system (EPS)
 - Power regulation and distribution
 - Maximum Power Point Tracking (MPPT)
 - Interfacing with CubeSat
 - Housekeeping data

Mechanisms

- Design must satisfy top level requirements/objectives and customer needs
- Stowed configuration must be no larger than 1U
 - Any larger and it will be unpractical for CubeSat mission
- Must provide EPS with ≈ 500 cm³ volume in lower assembly
- Springe hinges between panels drive extension
- Extended panels angle 10 degrees with z-axis
- Currently focusing on optimizing the XSAS baseline design
- Dynamic modeling using ADAMS to identify problematic areas for ground testing

Design Heritage

- 4 point release
- Assembly not rigid in stowed configuration
- Angular displacement duringdeployment•

- 1 U includes EPS
- Similar Dyneema burn release (experimentally validated)
- Reduced complexity
- Higher tolerances

Scissor Constrain

- Cantilevered support of constraint mechanism
- Lots of flex "bounce back"
- Torques in scissor pieces

Horizontal constraint (1 DOF)

- Fully supported scissor constraint mechanism
- Increased rigidity
- Offset scissor components to avoid interference

Lower Assembly

- Vertical scissor constraint requires tall lower assembly
- Increased internal complexity
- Requires an additional 0.5 U for EPS

- Horizontal scissor constraint saves valuable vertical space
- More room for panels (>200cm³ increase)
- Leaves enough space for EPS

Scissor to Panel Interface

 Predict stresses and safety factors at such small scales

- New T-shaped bracket attaches scissor arm to panel
- Mechanical attachment is an improvement over epoxy press fit method

Increasing Hinge Precision

- Old hinges introduced small displacement within hinge point
- Created angular displacement in scissor structure during extension
 - New hinges wider, higher precision to prevent unwanted play and improve linearity of extension

Testing Rig Validation

- Understand the dynamics of extension before proceeding in design
- Machined from a solid block for rapid prototype
- Focus on exploring the degrees of motion
- Prove feasibility of front panel horizontal constraints

Trials and Analysis

- Varied number of springs
- Achieved better linear deployment with bottom spring removed
- Identified geometric incompatibility

Panel Design

- Spacers between panels support panels during launch
- Current scissor attachment bracket doubles as a spacer
- Additional spacers placed around the panel
- Made from same material as bracket (Aluminum)

Spacers

Solar Array Wiring

- Wires integrated into PCB panels
- Flexible wiring between adjacent panels

- 8 "Strings" of solar panels wired in series
- Tradeoffs:
 - Complexity vs. reliability
 - Power generation vs. reliability
- Strings vary by panel angle and location

Solar Array Wiring

- 16 Power lines transferring unregulated power from solar cells to EPS
- 1 Signal wire supporting temperature sensors
- 1 Regulated 3.3V power line coming from the EPS and feeding the power to the temperature sensors
- 1 Common ground line

Electrical Power System

- Interface between solar cells and power bus of CubeSat
- Primary objectives:
 - Regulate power from solar panels
 - Distribute power to CubeSat
 - Collect basic telemetry data (voltage, current)
 - Deployment of XSAS
- Secondary objectives:
 - Convert power efficiently (MPPT)
 - Provide additional telemetry data (temperature)
- Utilize Michigan NanoSat Pipeline heritage

EPS – Block Diagram

EPS – Power Regulation

Input Regulation

- Converts voltage output of cells to provide steady voltage to power bus
- Only 4 regulators needed for 8 strings, due to shadowing

MPPT

- Adjusts reference voltage of regulator, regulators stop converting below reference voltage, more efficient
- Use microcontroller, saves space
- Backup analog set point tracker
- Under development in Michigan NanoSat Pipeline

EPS – Housekeeping Data

- Measurements
 - Panel temperature
 - Solar string output voltage
 - Solar string output current
- Measurements useful
 - MPPT architectures
 - Health monitoring
- Packages data for CubeSat
 - Dual purpose of microcontroller
 - Transmit data to ground station

EPS – Deployment Circuit

- Heat Nichrome wire to melt Dyneema and deploy XSAS
 - Dyneema burn via resistor commonly used to release NanoSat deployable structures
- 2 possible configuration:

Turn on nMOSFET to heat Nichrome

Turn on nMOSFET to charge capacitor
Turn off nMOSFET to heat Nichrome

Future Work

- Build full scale prototype of 3rd design iteration
- Perform integrated testing to validate design
 - Ground deployment testing
 - Thermal vacuum testing of mechanisms
- Prototype EPS components for testing
 - Input regulation
 - Basic MPPT architecture
 - Data management system

Questions?

