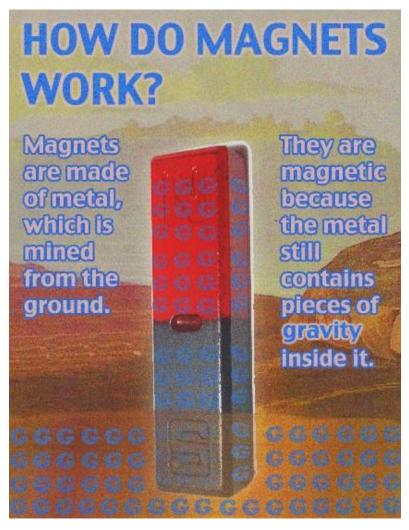
TOILS FOR COILS

The MXL's First On-Orbit Active Control System

Duncan Miller

Wednesday, May 01, 2013


Table of Contents

- Magnet Terminology
- M-Cubed-1 passive magnetic control
- M-Cubed-2 permanent magnet selection
- M-Cubed-2 coil design, selection and fabrication
- CADRE ferrite magnetorquer optimization
- Future work

Kind of Funny

Quick Guide to Magnets

 Magnetic Dipole: strength of the specific magnet; determines torque on S/C; oscillation frequency about B-field lines increases with stronger dipoles

$$\vec{\tau} = \vec{m} \times \vec{B}$$

- Hysteresis: resistance to changing B-field (damps oscillations —"friction"); greater the amount of material=greater amount of steady-state error
- *Remnance*: material property; higher remnance = smaller weight and size for a given dipole
- Coercitivity. resistance toward demagnitization (high T)
- Relative permeability (core): formation of B-field within itself μ

M

History of MXL Passive Control

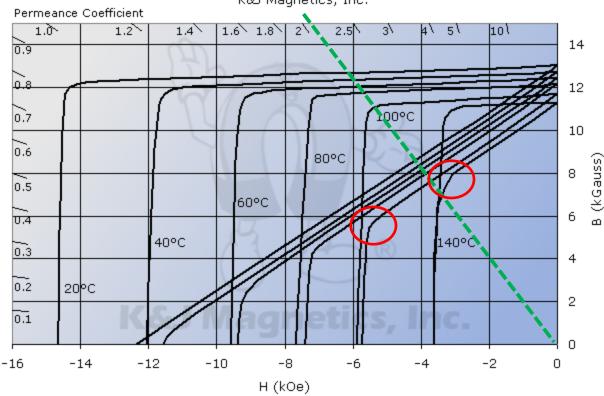
- Common industry standards:
 - Magnets
 - AlNiCo-5: stable; requires length-diameter ratio of at least 4 (for magnetic stability)
 - Neodymium: Computer magnets; low Curie temperature (loses magnetism); very high remnance; l-d ratio less of a factor
 - Hysteresis:
 - HiMu80; Permalloy; Permenorm
 - Energy dissipation through heating
- RAX and RAX-2
 - 4 AlNiCo-5 magnets (custom notched from Storch Magnetics):
 3 A-m² (magnetic moment decreased significantly after launch)
 - Hysteresis strips: HyMu80; 0.9g in each axis
- M-Cubed
 - 1 longer AlNiCo magnet: 1.415 A-m²
 - Hysteresis strips: HyMu80; 0.9g in each axis

M-Cubed-2 Permanent Magnet

- Permanent magnet: original baseline
- Flipped direction from Mcubed-1
 - Camera in +y direction
 - magnetic moment now in +z direction
 - Maximizes earth viewing from camera
- Hysteresis material –same as M-Cubed
- Neodymium ring magnets
 - Strong and small
 - But can it survive the high sunside temperatures without demagnetizing? (Yes)
 - Can we mount them efficiently? (Yes)

B-H Curves

X


- Permeance coefficient of R422: 2.21
- 1. Draw load line
- 2. It's above the 100 degree 'knee,' below the 140 degree knee.
- Below knee= irreversibly demagnetized
- Max estimated operating temperature: 130 C

Note: high T neodymium is available but required custom order from K&J

R422 magnet: R=ring, 42=Grade N42 neodynium

Grade N42

Permanent Neodymium Magnet Demagnetization Curves
K&J Magnetics, Inc.

Examples: http://www.kjmagnetics.com/blog.asp?p=temperature-and-neodymium-magnets Calculator: http://www.kjmagnetics.com/calculator.asp?calcType=ring

Process for Selecting M-Cubed Magnet

- 1. RMS sum of expected torques magnitudes on orbit (4e-7 N-m)
 - Residual dipole (dominates), solar pressure, aerodynamic toque, grav. grad with contingency
 - Solve for order of magnitude magnetic strength (~0.2 A-m²)

$$\vec{\tau} = \vec{m} \times \vec{B}$$

- 2. Literature review of documented CubeSats using permanent magnets (15 specs found)
 - Corroborate with dipole trends from review (✓)
 - Corroborate with Alex's/Young's simulations (✓)
- 3. Find N42 ring magnets to meet size and strength requirements
 - "Magnetic dipole" not a given parameter of sold magnets
 - Used B-field measurements (from K&J online calculator or magnetometer testing) at a known axial distance to back out dipole strength

$$B_{\text{axial}} = \frac{\mu_0}{4\pi} \frac{2mr}{(r^2 - l^2)^2}$$
 length=2l magnetic moment=m axial distance = r

 Stacking two R22 magnets on top of each other: superposition doubles dipole and only adds to thermal stability; the exact size not sold

M-Cubed total permanent dipole: 0.168 A-m²

Active Control

- As opposed to passive (magnets, grav grad, solar pressure, residual dipole, aerodynamic drag)
- Motivation: used to point and slew for optical systems, sun tracking, science (WINCS)
- 1axis, 2axis, 3axis
- Limited history on CubeSats

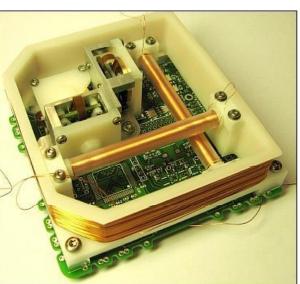
Magnetorquers

Advantages

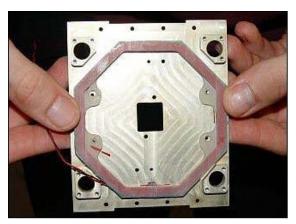
- Suitable for restricted volumes due to custom design possibility
- No moving elements; no propellant
- High reliability

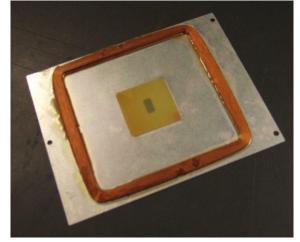
Disadvantages

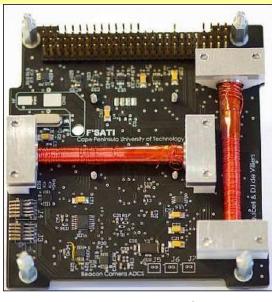
- Low torque (~10⁻⁷nNm); no torque along Earth's B-field vector
- B-field uncertainties/errors can lead to unstable control
- No use beyond low Earth orbit

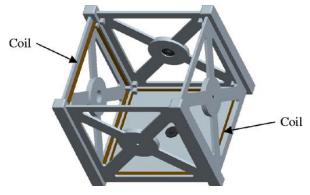

Designs

- Air core
 - Bigger area footprint
 - No hysteresis in control; negligible transients
 - Requires hysteresis rods to detumble and dampen oscillations
- Ferrous core
 - Iron rods with high relative permeabilities increase the dipole moment of the solenoid
 - Cores have nonlinear hysteresis effect on control and dampening


Creative Design Space (1)



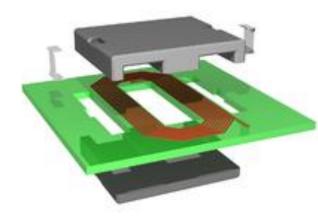

Delfi n3Xt

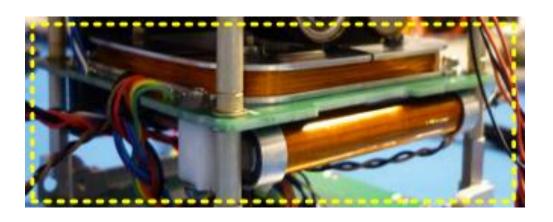

DTU-Sat 2

AAUSat II

ZACube 1

St. Louis University




Creative Design Space (2)

Ames/CalPoly

ISIS

Building Magnetorquers in House

- Start with z-axis air core for mcubed
 - 1) Design the hardware (optimization)
 - Required accuracy, power consumption, footprint, mass
 - 2) Design the electronic schematics
 - Hbridge, controller (MSP430/STAMP), bus components
 - 3) Test and characterize
 - Actual power consumed, transient effects on integrated satellite
- CADRE 3axis control
 - Same process. New Variables

Process for Selecting M-Cubed Torquer

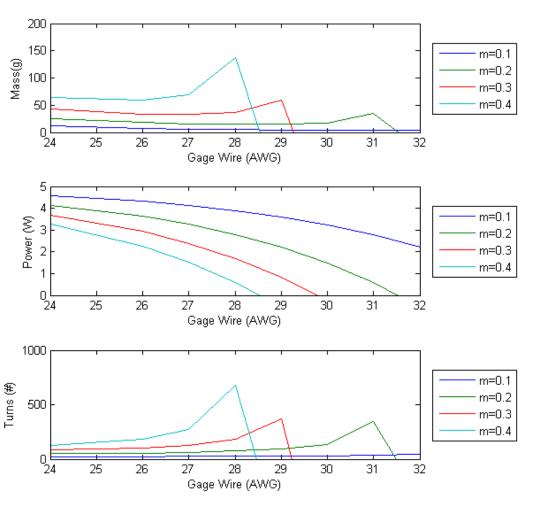
[Same as magnet] RMS sum of expected torques magnitudes on orbit (4e-7 N-m)

$$\vec{\tau} = \vec{m} \times \vec{B}$$

- Literature review of documented CubeSats using active magnetic control (13 specs found)
- Optimize the (air core) coil in Matlab 3. $\vec{m} = \mu N i \vec{A}$

- Unknown variables: number of turns (n), wire gauge (aw), enclosed area, length of the wire, wire resistance, mass, power, filter(?)
 - Buckingham ☐ theorem reduces to 3 independent unknown variables. Choose: turns, mass, power at a set wire gage
- Requirements: magnetic moment must be >= permanent magnet to undock (attack, etc)
- Two matlab codes
 - msize: brute force—ie. grid the design space
 - Trends are intuitive but wire gauge is discrete not continuous; more difficult to pick out optimizer than originally thought
 - msize2: graph variables and propose a variety of feasible designs. Choose one.

Matlab Sizing Script 2



Trends

- Increasing wire gauge (smaller area) reduces the power (higher resistance)
- Low power tradeoff is a higher mass

More complex that it seems

For the same magnetic moment, smaller wire gauge requires more turns →
 increases length →
 increases resistance →
 decreases current →
 requires more turns → →
 Turn count/mass reach infinity/infeasible range=no solution

Graph is representative.

The Hardware

16

- Copper wire
 - Polythermaleze coating (space rated, low outgassing, low deterioration)
 - SPRL has even wire gages
 - Greater than >2 years old (NASA standard)
 - Tested in the lab for cracks (wind/unwind)
- Mount
 - Lasercut from White Delrin Acetal Resin
 - Made in layers
- Scotchcast 280
 - Increases dielectric (only important for HV)
 - Rigidly locks wires in place (doesn't unwind)
 - Seals wire to mount (less risk of vibration modes)

Design Iterations

Rev1: Coil wound directly on board; 4 AlNiCo-5 magnets; hysteresis mounts

Rev3/4: Square coil (slightly smaller)

Rev2: Removable coil; neodymium magnets; integrated hysteresis

Flight Hardware Specifications

18

- Turns: 193
- Length of wire: 54.04 m
- Gage: 30 AWG
- Designed Area: 6.5 cm x 6.5 cm
- Effective Area: 45.87 cm²
- Designed magnetic moment: 0.36 A-m^2 at 8.2 Vbatt
- Resistance: 15.64 Ohm
- Inductance: 5.0923 mH (tested at 1kH, Q value of 2.045)
- Power when running: 0.4 A so about ~3W
- Mass: 47.92g

Operations:

- Bang-bang control=short intervals in operation
- Secondary to COVE mission—ACB only powered on after primary mission completed.
- Raises TRL of MXL technology (coil fab, gyros) and a good exercise in attitude estimation (gyros) and one axis control

Process for Designing CADRE Coils

- Two ferrite cored; z-axis air core
- Optimization using fmincon

· New unknown variables: core length, core radius

$$f(x) = \vec{m} = \frac{rV_{bus}}{2W_{res}} \left(1 + \frac{\mu_r - 1}{1 + (\mu_r - 1)N_d} \right) \to max$$

Where:
$$N_d = \frac{4[\ln l/r - 1]}{(l/r)^2 - 4\ln l/r} \, { {
m rod \ length} = l \over {{
m rod \ radius} = r \over {{
m wire \ resistance} \ (\Omega/{
m m}) = W_{res}} }$$

Subject to constraints (design parameters of previously selected ISIS torquer)

Mass < 50g Power<200mW Feasible region

Mass<50g
$$\begin{cases} h_1(x)=\rho_{core}\pi r^2l+a_wl_w\rho_{Cu}-0.05\leq 0\\ h_2(x)=\frac{V_{bus}^2}{R}-0.2\leq 0\\ h_3(x)=n-10,000\leq 0\\ h_4(x)=r-l\leq 0 \end{cases}$$
 Reasonable turn count

Notes

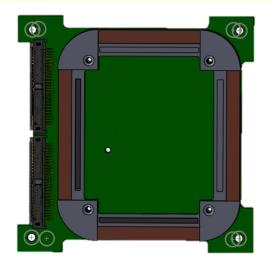
- Figures of merit much different than M-Cubed-2:
 - Required moment only 0.05 A-m² decided from Alex Fox's simulations
 - Active almost every orbit→ necessitates low power
- Limits on wire gage area: >40AWG is uncommon and riskier (easier to break during winding, more variation in wire area)

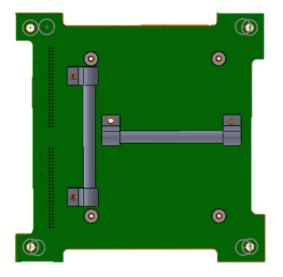
Proposed X-Y Designs

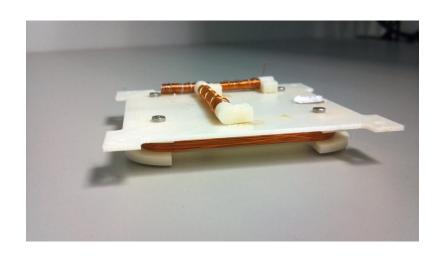
CONSTRAINTS			RESULTS					
Power	Mass	Length (cm)	DIPOLE	Mass	Power	Turns	Radius (mm)	Length (cm)
200mW	30g	5cm	0.217	30g	200mW	7.66k	3.59mm	5cm
100mW	30g	5cm	NO Solution					
100mW	50g	5cm	No Solution					
150mW	50g	5cm	0.193	50g	150mW	7.416k	4.9mm	5cm
100mW	50g	3cm	0.107	49g	100mW	9.9k	5.5mm	3cm
300mW	50g	2cm	0.1064	32g	298mW	2.94k	6.3mm	2.2cm
200mW	30g	2cm	0.0707	18.2g	200mW	8.404k	3.3mm	2cm

(no active constraints)

Comments (same similar trends as M-Cubed-2 coil design):


- Most of the torquer mass comes from core/mount, not extra wire
- Smaller magnetic dipoles doesn't really save us on mass (or much on power)!
- There are some constraints that have no solution
 - It's not a matter of just decreasing the magnetic dipole!
- Not actually doing us favor with smaller torque. See trends


Ideas:


- Replace iron core with delrin core or hollow tube for smaller magnetic moment
- A series resistor can limit the current without smaller/longer wire (in order to achieve a smaller magnetic moment), but wastes power as heat and doesn't' save mass since the core is unchanged.
- Proposed sizing dipole of 0.22 A-m² is able to minimally control CADRE in the case of a wheel failure

Torquer Control Board (TCB)

All three coils are being designed to mount to a single board, the Torquer Control Board (TCB), which may also function as a connector hub in the ADCS bay.

All control is intended to be over GPIO from the ADCS motherboard

Future Work

- Ground testing of M-Cubed-2 integrated coil while we can
 - Re-confirm the magnetic moment with gaussmeter
 - Map out B-field? Effects on magnetometers?
- Fly M-Cubed-2 and test controllability on orbit
 - Use gyros for state estimation
 - Raises TRL of algorithms and hardware
- Torquer Control Board development
 - Finish the z-axis coil design
 - Prototype board with ferrite core magnetorquers and H-bridges (mechanical integration and demonstration). Fabrication of cores with Scotchcast dunk etc
- Algorithm simulations finished in Matlab, converting to C++
- Continued documentation in fabrication and design

FIN

