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Abstract

This paper presents filtering solutions for estimating the relative trajectory of a spin stabilized satellite. The
SPHERES satellites have been selected as the hardware testbed for implementing a Multiplicative Extended
Kalman Filter and novel Multiplicative Unscented Kalman Filter. Relative state measurements are provided by
imaging fiducial markers on the target. The results from this analysis show that when the dynamic nonlinearities
and non-Gaussian noises are NOT ignored, the Unscented Kalman Filter performs measurably better than the
MEKF. In future ISS test sessions, an Unscented Kalman Filter is expected to now be implemented in order to
improve satellite estimation and increase the probability of successful satellite docking.
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1 Project Motivation

Determining, with confidence, the relative state of a free-
floating body has a wide variety of applications. The
inspection of drifting or tumbling satellites is of particu-
lar interest to the Defense Advanced Research Projects
Agency (DARPA). The target could be a military asset,
an asteroid, space debris, a comet, or an uncooperative
agent. Once characterized the target can be subsequently
docked to, serviced or otherwise studied. For example,
DARPA Phoenix has proposed a satlet assembly architec-
ture that requires high precision relative sensing in order
to aggregate small modules in larger operable satellites.

Visual sensing using known geometries already has her-
itage in space but is still a problem of high interest.
Identifing known geometries through image processing of
fiducial markers is well known - indeed it has been in
use on the International Space Station (ISS) for several
years (Figure 1). However, traditionally the problem
is formuated in the context of a dynamic observer and a
static target (for navigation). The applications of a static
observer and a dynamic (e.g. spin-stabilized) target are
less well known. Therein lies the research gap which is
the focus of this project.

Figure 1: Concentric circle fiducial markers have previ-
ously been used on the exterior of the ISS

1.1 Instantiation

The Synchronized Position Hold Engage Reorient Satel-
lites (SPHERES) has been selected as a platform for
this investigation. SPHERES is an on-orbit controls
testbed operated inside the ISS that provides long du-

ration zero gravity. Athough SPHERES was launched
in 2006, the satellites have been continously upgraded
with high risk technology payloads. The newest forth-
coming payloads are the SPHERES Universal Docking
Ports (UDPs) which enable satellite docking and undock-
ing (Figure 2). The author intends to apply the estima-
tors derived within this report to UDP testing operations
on Station.

Figure 2: The SPHERES Universal Docking Ports can be
used for sensing and estimation by virtue of an onboard
camera.

The UDPs have an integrated camera that can be uti-
lized for high precision relative sensing. This is achieved
by identifying fiducial markers on the target satellite op-
posite the opposing camera. A high level concept of oper-
ations that the estimation filters enable is shown in Figure
3. In this scenario, the target SPHERE B is in a stablized
spin about the camera axis so the fiducials are always in
sight by SPHERE A.

Figure 3: The proposed concept of operations for relative
pose estimation.
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2 Project Scope

For this project, I have developed a six degree of freedom
stochastic simulator of a rigid body spacecraft. With this
we explore the performance of two filters in the presence
of nonlinear dynamics and non-Gaussian random noise in
both simulation and real hardware:

1. A Multiplicative Extended Kalman Filter
2. An Unscented Kalman Filter using the same Mul-

tiplicative parameterization of quaternions

This project is of intellectual merit for three reasons.
First, it is relevant to the class material covered this
semester. I first researched the 6DOF equations of mo-
tion for a free-floating satellite. Then I formulated the
dynamics as a 13-state time-varying estimation problem
that can be reparameterized as a 12-state system which
preserves the quaternion norm. Second, this project tack-
les both the nonlinearities in dynamics and non-Gaussian
random noise in measurements. This is necessary in order
to measure the performance of the two filters being con-
sidered. Finally, the results presented herein consist of
Montecarlo simulations and real world data to show that
the designed filters work effectively. Using this knowl-
edge, the filtering techniques will be applied directly to
the SPHERES testbed on the International Space Station
in the scope of a grander mission.

This project delivers (1) a stochastic propagator of non-
linear 6DOF dynamics, (2) a custom visualization of
the simulated state, (3) results and conclusions from
both simulated and hardware filtering, (4) an auto-coded
version of both filters for integration onto a real-world
testbed, (5) a body of Matlab code, plots, and config files
generated for this assignment.

3 Dynamics

The state of a spacecraft in inertial space can be rep-
resented as a 13 element state vector consisting of posi-
tion, velocity, attitude and rotation rate elements. For
a six degree-of-freedom spacecraft, this representation is
sufficient to model trajectories, disturbances, and control
inputs without any ambiguity. In the scope of the project
presented herein, the state to be estimated is a relative
state. The position, velocity, attitude and rotation are
defined relative to an inertially fixed observer.

Thus, r is the x,y,z displacement vector from the observer
to the target. v is the x,y,z velocty of the target relative to
the observer. q is a quaternion transform that relates the
orientation of the observer’s frame to the target’s frame.
The definition of a quaternion is reviewed in Appendix

A.1. ω defines the body-fixed rotation rates of the tar-
get relative to the inertial observer. The assembled state
vector to be estimated is collected as x.

r = [rx ry rz]
T (1)

v = [vx vy vz]
T (2)

q = [q1 q2 q3 q4]T (3)

ω = [ωx ωy ωz]
T (4)

x = [r v q ω]T (5)

The second order dynamics can be rewritten as a set of
first order differential equations. The continous time,
stochastic, nonlinear dynamics are collected as follows.
The process noise (Wv and Wω) enter as acceleration
inputs on v̇ and ω̇. Although the forces and torques
from the spacecraft thrusters are included in the conti-
nous time dynamics, they are dropped as 0 in the scope
of this project. Thus, we describe the free floating non-
linear dynamics of a tumbling spacecraft as [3] [1]

ṙ = v (6)

v̇ =
1

m
(Wv + FT) (7)

q̇ =
1

2
Ω(ω)q =

1

2

[
ω
0

]
⊗ q (8)

ω̇ = J−1(−ω × Jω + Wω + FR) (9)

Where we have defined J as the moment of inertia tensor
along the geometric axes of the SPHERES. The definition
of the inertia tensor is covered in Appendix A.2.

J =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (10)

For convenience, I have introduced the outer-product ma-
trix for quaternion kinematrics as

Ω(ω) =


0 −ω3 ω2 ω1

ω3 0 −ω1 ω2

−ω2 ω1 0 ω3

−ω1 −ω2 −ω3 0

 (11)

In addition, the cross product matrix [ω×] condenses the
notation for subsequent state space representations.

[ω×] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (12)
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4 Measurement Modeling

The measurement inputs to the filter are the position and
quaternion of the target relative to the observer’s cam-
era frame. The observer is assumed to be inertially still
and has the role of identifying and tracking the tumbling
spacecraft prior to docking.

yk =

[
r̄k
σ̄k

]
(13)

These measurements are the output of Haralick’s exte-
rior orientation problem. The methodology is derived in
Tweddle 2010 [8] for a monochrome camera. Although
out of the scope of this project, I have expanded on these
principles for an RGB solution, which is what has been
applied in Section 9. It has been shown that unique iden-
tification of four points on a plane is sufficient to deter-
mine the translation (r) and rotation (q) between the
observer and target frames without ambiguity.

Figure 4: Graphic showing how 3D points are projected
onto a 2D image plane for processing [4]

The solution to the exterior orientation problem is ob-
tained by solving a least squares, iterative, nonlinear
equation. In addition to the solution, a mean squared
reprojection error is also obtained with is proportional to
the confidence of the estimate. This is detailed further in
Section 7 but in the end, the measurements are treated
as given for the purposes of this project.

5 Multiplicative Extended Kalman
Filter

A Multiplicative Extended Kalman Filter (MEKF) has
been implemented to estimate the full state dynamics of
the spin stabilized satellite. Since measurements are only
position and attitude, the information from the dynamic
equations can be used to obtain a smoothed estimate of

the full state (including velocities) that filters out mea-
surement and process noise. The MEKF is reviewed
herein.

The continous, nonlinear dynamics (as defined in Section
3) can be expressed in general as a stochastic nonlinear
differential equation and nonlinear measurement equation
with the following notation.

ẋ = f(x, t) + Bww (14)

y = h(x) + v (15)

5.1 Reparameterize

The discrete-time Extended Kalman Filter (EKF) has
been introduced to account for nonlinearities in the dy-
namic model. The nonlinear dynamics (expressed as f)
can be linearized at every time step around the current
best estimate. In this way, the same optimality prinicples
employed for the traditional Kalman filter can be used
for nonlinear systems to drive the estimation error to zero.

However, the EKF is not mathematically tuned to handle
quaternion dynamics. Instead, an MEKF has been intro-
duced in the literature to account for the fact that unit
quaterions must maintain unit magnitude. Even small
error quaternions must preserve unity (and should not be
driven to zero). This motivates the reparameterization of
the error quaternion as a three-element set of Modified
Rodrigues Parameters (MRP), defined exactly as follows.

σ =
4

1 + q4

q1

q2

q3

 (16)

σ̇ =
d

dt
(σ) =

4

(1 + q4)2

q̇1(1 + q4)− q̇4q1

q̇2(1 + q4)− q̇4q2

q̇3(1 + q4)− q̇4q3

 (17)

In this way, the zero vector (σ = 0) represents no error
(the goal). The Modified Rodrigues Parameterization
is valid for angle errors less than a full rotation. This
is adequate since the error quaterion is reset to 0 after
every measurement update.

The MRPs can be calculated from each measurement by
determing the quaternion product of the measurement
and the complex conjugate of the current state estimate.

σ̄k−1 = q̄k ⊗ q∗refk−1
(18)

Also, at the end of each iteration, once the MRPs have
been filtered, the current best estimate of the target’s
quaternion can be recovered by taking the quaternion
product of the error quaterion and the previous estimate.

qk = δq(σk)⊗ qrefk−1
(19)
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5.2 Linearize

According to the MEKF, at each time step, the dynamics
must be linearized around the current best estimate and
subsequently discretized in order to apply the Kalman
Filter equations.

Ak =
∂f(a)

∂x

∣∣∣∣
a=x̂k−1

=


∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
. . .


x=x̂(t)

(20)

Ck =
∂h(a)

∂x

∣∣∣∣
a=x̂k−1

(21)

In the scope of this problem, the translational dynam-
ics are trivially linear. However, the rotational dynamics
(both the kinematics of the MRPs and Euler’s equation)
are nonlinear and have been linearized analytically. The
kinematics of the MRPs can be written as a function of
the angular velocities as follows according to [6] [5].

σ̇ =
1

2

[
I3×3

(
1− σTσ

2

)
+ [σ×] + σσT

]
ω (22)

By inspection, it is clear that the linearized version of this
can be reduced to

σ̇ ≈ 1

2
[σ×]ω +

1

4
I3×3ω (23)

Linearizing Euler’s equation can also be done with some
effort. First, it is easiest to expand the vector form of
Euler’s rotational dynamics into explicit equations. Re-
fer to Appendix A.3 for details of the Jacobian. The lin-
earized continous A matrix evaluated at the best estimate
is called Aω.

ω̇ = J−1

ω2(Izzω3 − Ixyω1 − Iyzω2)− ω3(Iyyω2 − Ixyω1 − Iyzω3)
ω3(Ixxω1 − Ixyω2 − Ixzω3)− ω1(Izzω3 − Ixzω1 − Iyzω2)
ω1(Iyyω2 − Ixyω1 − Iyzω3)− ω2(Ixxω1 − Ixyω2 − Ixzω3)


(24)

ω̇ ≈ Aωω (25)

The linearized continous dynamics can be assembled as

ẋ = Akx + Bww (26)
ṙ
v̇
σ̇
ω̇

 =


03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3
1
2 [ω×] 1

4I3×3

03×3 03×3 03×3 Aω




r
v
σ
ω

 (27)

+

 03×3 03×3
1
mI3×3 03×3

03×3 J−1

[wv

wω

]
(28)

To apply the discrete MEKF equations, we must des-
critize the dynamics to obtain Ad and Wd .

xk = eA∆txk−1 +

∫ ∆t

0

eAτBwwdτ (29)

xk = Adxk−1 + wk (30)

This can be achieved numerically using the Hamiltonian
matrix, S at each time step.

S =

[
−Ak BwWcBw

012×12 AT
k

]
(31)

Z = eS∆t =

[
Z11 Z12

012×12 Z22

]
(32)

Ad = ZT22 (33)

Wd = ZT22Z12 (34)

5.3 Propagate

During each iteration, the state must be propagated from
the previous estimate. Euler integration of the nonlinear
differential equation provides the state, and the propa-
gated covariance can also be found.

x̂k|k−1 = x̂k−1|k−1 + ∆t · f(x̂k−1|k−1) (35)

Qk|k−1 = AdQk−1|k−1A
T
d + Wd (36)

Again, we note the key assumptions about the driving
noise Wd, modeled as white.

E[wk] = 0 ∀k (37)

E[wk1w
T
k2 ] = Wk1∆(k1 − k2) (38)

Where

∆(k) =

{
1 k = 0
0 k 6= 0

(39)

5.4 Measurement Update

The measurement update equations can be use the posi-
tion and quaternion solutions from the exterior orienta-
tion problem. The measurement noise modeling is derived
in Section 7.

yk =

[
r̄k
σ̄k

]
= Cxk + vk (40)

=

[
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

]
rk
vk
σk
ωk

+

[
vr
vσ

]
(41)

With this, we are now able to compute successively the
Kalman gain, Lk and the updated state and covariance
estimates.

Lk = Qk|k−1C
T
d [CdQk|k−1C

T
d Rk]−1 (42)

x̂k|k = x̂k|k−1 + Lk(yk − hk(x̂k|k−1)) (43)

Qk|k = (I− LkCd)Qk|k−1 (44)

However, in implementing the above equations, I oc-
casionally encountered numerical stability issues when
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the covariance diverged due to large condition numbers.
Thus, using the fact that the covariance is always pos-
itive symmetric definite, we can implement a two step
correction consisting of a numerically robust version of
the covariance update equation. This has been show to
be less sensitive to arithmetic truncation, especially when
R is small.

Qk|k = (I− LkCk)Qk|k−1(I− LkCk)T + LkRkL
T
k

(45)

Q =
1

2
(Q + QT ) (46)

6 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) provides an al-
ternative filtering technique compared with the MEKF.
While the MEKF ignores the nonlinearities of the model,
the UKF propagates a set of sample points through the
noninear model, thereby obtaining a better characteriza-
tion of the mean and covariance. My implementation of
this filter is achieved using the same dynamics and MRPs
presented in the previous section. The generalized UKF
method is reviewed herein.

At each iteration, first, a set of 2n sigma points is gener-
ated about the current best estimate.

xik−1 = x̂k−1|k−1 ± x̃i (47)

x̃i =
√
nQk−1|k−1

i
, i = 1...n (48)

Where
√
nQi is the ith row of the square root matrix.

Each sigma point is subsequently propagated through the
discrete, nonlinear dynamic equations.

x̂ik = f(x̂ik−1,���uk−1,�
��tk−1) (49)

The propagated sigma points x̂ik can be used to obtain
a better approximation of the propagated mean and co-
varience.

x̂k|k−1 =
1

2n

2n∑
i=1

x̂ik (50)

Qk|k−1 =
1

2n

2n∑
i=1

(x̂ik − x̂k|k−1)(x̂ik − x̂k|k−1)T + wk−1

(51)

New sigma points can be generated to obtain a more accu-
rate measurement prediction. In the scope of this project,
the measurement update equation is linear and this step

is trivially unncessary.

xik|k−1 = x̂k|k−1 ± x̃i (52)

x̃i =
√
nQk|k−1

i
, i = 1...n (53)

ŷik = h(x̂ik, tk) = Cx̂ik (54)

ŷk =
1

2n

2n∑
i=1

ŷik (55)

The estimated covariance and cross-covariance can be ob-
tained using the sample variance equations.

Qyy =
1

2n

2n∑
i=1

(yik − yk)(yik − yk)T + Rk (56)

Qxy =
1

2n

2n∑
i=1

(xik − xk|k−1)(yik − yk)T (57)

Finally, we have the Kalman gain and update equations
as follows.

Lk = QxyQ
−1
yy (58)

x̂k|k = x̂k|k−1 + Lk(yk − ŷk) (59)

Qk|k = Qk|k−1 −QxyQ
−1
yy QT

xy (60)

= Qk|k−1 − LkQyyL
T
k (61)

7 Noise Modeling

7.1 Process Noise

The process noise enters the dynamics in the linear and
angular rotational acceleration equations. Wv and Wω

are the disturbance accelerations that are applied to both
free floating spacecraft. Since the state vector being mod-
eled is a relative state, the process noise can be grouped
onto the target spacecraft in the scope of relative estima-
tion.

The process noise has been modeled as Gaussian white
noise. For an orbiting spacecraft it can include micro-
forces such as solar pressure, gravity gradients and at-
mospheric drag. However, in the instantiation of this es-
timation problem (i.e. SPHERES inside of the Interna-
tional Space Station) there are air drafts from circulating
fans that provide the largest magnitude disturbances. To
make the results the most interesting, this is what has
been modeled.

E[Wv(τ1)Wv(τ2)T ] = Wc1δ(τ1 − τ2) (62)

E[Wω(τ1)Wω(τ2)T ] = Wc2δ(τ1 − τ2) (63)

E[Wv(τ1)Wω(τ2)T ] = 03×3 (64)

2014Dec5 5



Relative Estimation
Duncan Miller, 16.322 Student

duncanlm@mit.edu

7.2 Random Measurement Noise

Three families of measurement noise have been imple-
mented in order to achieve the most realistic performance
of the filters. First, the traditional random noise has been
included in the measurements. However, the noise on
the measurements has been modeled as nonlinear/non-
Gaussian. Due to nonlineararities in both the dynamics
and (now) the measurements we can conclude that the
MEKF will not be an unbiased estimator for this problem.

The derivation for the nonlinear noise measurements be-
gins with assumption that the positions of the fiducial
markers on the image plane suffer from small Gaussian
noise perturbations. That is, the true pixel position of
the concentric circles can be distrubed normally with
some variance that is a function of the atmospheric light-
ing, image blur, software threasholding and CMOS noise.
However, we can conclude that there is a nonlinear trans-
form from pixel noise to quaternion measurement noise
in two of the three axes.

Figure 5 depicts the noise resulting from the twist case.
w represents the pixel noise error which is applied in the
image plane around the first Euler angle (x-axis twist).
Using small angle approximations, the transfomed noise
in the first Euler angle (φ) is

φw = sin−1 w

d
≈ w

d
(65)

Where d has been defined to be the distance between the
center of the concentric circle (black dot) and the center
of the fiducial plane. This is a linear transform to the
first Euler angle.

Figure 5: This graphic shows higher measurement sensi-
tivity (lower noise) for an x-axis twist (blue is the image
plane).

However, the two tilt degrees of freedom are much more
sensitive to Euler angle noise. Athough the pixel noise

is the same, Figure 6 shows that the same pixel noise
w results in a larger angle noise in the second and third
Euler angles. A small angle approximation provides the
following relation.

cos θw =
d− w
d

= 1− w

d
(66)

cos θw ≈ 1− θ2
w

2
= 1− w

d
(67)

θw, ψw ≈
√

2w

d
(68)

Figure 6: This graphic shows lower measurement sensitiv-
ity (higher noise) for a y- or z-axis tilt (blue is the image
plane).

Since the relation w/d is smaller than 1, it is clear that
the measurement noise on the second (and third) Euler
angles are subject to a nonlinear amplifying transform.
After the Euler angle noise has been generated, it is fur-
ther transformed into an error quaterion as derived in
Appendix A.1. This error quaternion is integrated into
the measurement according to the previously introduced
multiplicative outer product.

qmeas(k) = δqw ⊗ qtruth(k) (69)

Thus, in modeling R within the filters, we have weighted
the measurement states according to a variable η2 which
is a measure of the confidence of the measurement. In
the hardware implementation, this is an output of the it-
erative solution to the exterior orientation problem and
is an input for every filter step.

7.3 Type I Errors

In probability theory, Type I errors (or false positives)
can lead to a large divergence of the measurement state.
In the scope of this problem, it is concievable (in fact, oc-
casionally expected) that the camera tracking algorithm
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falsely identifies a blob as a fiducial marker. This can
result in a measurement that may be significantly offset
from the current state estimate. In the simulation, this
has been emulated by increasing the variance of the dis-
crete random noise by a factor of 5 approximately 5% of
the time.
Athough the filters presented herein do not actively per-
form outlier rejection, I chose to model this in the system
in order to make conclusions on the robustness of the fil-
ter.

7.4 Type II Errors

In probability theory, Type II errors (or false nega-
tives) arise when a measurement exists but the algorithm
chooses not to use it. In the scope of this problem, it
is concievable that a measurement may not be acquired
every time step. This can be caused by camera distur-
bances, motion blur, or external objects obscuring the
markers. As a result, the filter propagates for longer
time periods between measurements. This has been im-
plemented in my simulation by dropping measurements
approximately 5% of the time to get a more realistic per-
formance from the filters.

8 Simulation Results

The scenario studied is a spin stabilized case about the
x-axis of the target SPHERES satellite. The intial condi-
tions ensure that the SPHERES is aligned with the fidu-
cials pointed roughly towards the camera and the prod-
ucts of inertia of the SPHERES ensure that the nonlinear
dynamics are interesting.

r0 = [1 0 0]Tm (70)

v0 = [−0.1 0 0]Tm/s (71)

q0 = [0 0 1 0]T (72)

ω0 = [0.1 − 0.02 − 0.0001]T rad/s (73)

x0 = [r0 v0 q0 ω0]T (74)

In the scenario considered, I have propagated for 20 sec-
onds with a time step of 0.01. Longer times were also
studied and the results were comparable. The noise co-
variances, R and Wc, were also varied. In the presented
solution, I have set

R =

[
0.05η2I3×3 03×3

03×3 η2I3×3

]
(75)

Rk = R (76)

Wc = 10−4

[
I3×3 03×3

03×3 0.002I3×3

]
(77)

Wk ≈Wc∆t (78)

Due to the conflicting units between states, some states
have smaller or larger variances. The matrices were se-
lected based on expected disturbances. I also note that R
is a function of η2, an output of the exterior orientation
problem and generally small (≈ 0.005).

8.1 Representative Convergence

Here we present representative convergence of the filter
for all 13 states. Appendix C contains larger versions of
these plots. It can be seen in Figure 20 that the noise is
relatively white except for the Type I errors which are the
obvious state outliers. The large turquoise bullet repre-
sents the initial guess of the state, which quickly converges
to the truth state.
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Figure 7: Representative tracking of position states with
full noise modeling.

For the position and velocities, subject to process noise,
the dynamics are linear and it is obvious that the MEKF
and UKF behave similarly and very well. Their differ-
ences in pure linear estimation really can only be dis-
cerned through Montecarlo simulations.
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Figure 8: Representative tracking of velocity states with
full noise modeling.

The merits of the Unscented Transform manifest them-
selves in the estimation of the nonlinear rotational dy-
namics with non-Gaussian noise. In Figure 22, it can be
seen that the magnitude of the noise varies periodically.
Since this plot is busy and small, a larger version is re-
produced in the Appendix and the error vector is plotted
in Figure 11.
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Figure 9: Representative tracking of quaternion states
with full noise modeling.

It can be seen that the MEKF suffers from higher fre-
quency, larger magnitude oscillations in the ω estimate
compared to the UKF.
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Figure 10: Representative tracking of angular velocity
states with full noise modeling.

8.2 Representative Errors

In this section, we plot the estimation errors relative to
the known truth states. The UKF performs better across
the board in the nonlinear states. It is noted that the
UKF does suffer from higher frequency errors in the initial
few steps compared with the MEKF but this is eventually
smoothed out for the better.
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Figure 11: Representative quaternion error with full noise
modeling.

The effects of the Type I errors get smoothed and inte-
grated into the angular rate estimates. It can be seen that
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the estimates suffer latch ups (sharp discontinuities) when
multiple Type I errors are observed successively (seen in
Figure 22). However, it is clear that the UKF recovers
much better than the MEKF from Type I errors.
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Figure 12: Representative angular velocity error with full
noise modeling.

8.3 Modeling Variations

As an itellectual exercise, I have also moldeled the system
with varying degrees of noise to better understand the
robustness of the controllers. First, I considered a simpli-
fied white noise case where the noise on the quaternion
measurement is directly white (does not undergo the non-
linear transform described previously). In addition there
are no Type I errors. In this case the MEKF and UKF
perform nearly identically.
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Figure 13: Representative angular velocity error with full
noise modeling.

In a second noise variation investigation, I changed the
noise covariances within the filters by a factor of two rel-
ative to the true W and R. In a real world filter, the
process noise and measurement noise intensities will not
be known exactly. In fact, they may be different by a
factor of 2 or more. I ran the MEKF and UKF filters and
both demonstrated robustness to variation.
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Figure 14: Representative angular velocity error with full
noise modeling.

8.4 Montecarlo Simulation

Since a single filter run is based on stochastic noise, it is
natural to perform a Montecarlo simulation in order to
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judge and compare the expected filter performance. To
this end, I have simulated 100 scenarios with identical
noise intensities. Using the results from each run, we can
compute a metric called the Mean Squared Error (MSE).
This can be calculated by summing over all time for each
run for each filter. Since the system is subject to non-
linear dynamics and non-gaussian noise, the MEKF is no
longer a non-biased estimate of the state, which manifests
itself in the derivation of the MSE.

MSE =
1

n

n∑
i=1

(x̂i − xi)
2 (79)

MSE = V ar(x̂) + (Bias(x̂,x))2 (80)

However, the MSE is not the best performance parameter
that can be used because its magnitude is a function of
the base units of measurement. Thus, we introduce the
normalized root mean squared deviation as follows.

NRMSD(x̂i) =

√
MSE(x̂i)

xmaxi
− xmini

(81)

The NRMSD can be calculated for each state and aver-
aged over all montecarlo runs. From the NRMSD (Figure
15), we can make conclusions about the performance of
each filter.
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Figure 15: The non-dimensional performance of the
MEKF and UKF filters (lower is better)

It is obvious that for the linear translational dynamics,
the performance of the MEKF relative to the UKF is
nearly identical. However, in the presence of nonlineari-
ties and non-Gaussian noise, it becomes obvious that the
UKF has significant advantages, especially in two of the
quaternion states (q1 and q4) and two of the of the angu-
lar velocity rates (wy and wz which are nonzero precisely
due to nonlinearities).

9 Hardware Testing

As a final step of validating the performance of these fil-
ters, I have run them in real-time on actual hardware in
the lab. To achieve this, I have used the Matlab Coder
toolbox to auto-code the Matlab function into C++ files.
The SPHERES-VERTIGO processor runs C++ so it was
simple enough to integrate the proposed MEKF and UKF
filters within the SPHERES software framework. As
shown in the video in class, the hardware demonstration
involved floating the SPHERES on a 3DOF air carriage
and collecting state measurements during a “flyby” ma-
neuver. Since on the ground we are restricted to 3DOF,
a spin stabilized scenario was infeasible to implement.

Figure 16: One instant of a measurement solution (target
is locked)

The camera was capable of acquiring a lock on the target
spacecraft (Figure 16) during the pass. From this, the
full state data was able to be estimated by both filters.
Although we are missing a “truth” state, I was able to
verify though the video that the direction and order of
magnitude of the position and velocity states was cor-
rectly being estimated. Moreover, the difference between
MEKF and UKF is plotted in Figure 30 and it can be
seen that they tend to converge over time (for the linear
translational dynamics).
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Figure 17: Quaternion estimate of the state in the
SPHERES hardware demo

Just by visual inspection of the video capture, it is clear
that the rotation rates are small and do not vary by more
than 10% throughout the run. However, the MEKF esti-
mator exhibits high estimate oscillations in comparison to
the UKF until converging to a more reasonable solution.
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Figure 18: Angular rate estimate of the state in the
SPHERES hardware demo

Finally, I note that the distrubances experienced in this
hardware demo are on the same order of magnitude ex-
pected on the ISS, if not a bit larger than expected. The
air carriages are not perfect isolators and the glass table is
never perfectly balanced, which introduces process noises

that we wouldn’t expect in zero gravity. The complete
results of the hardware testing can be found in Appendix
C.2.

10 Summary and Conclusions

In this report, we have investigated the performance
of two strategic filtering methods: a Multiplicative Ex-
tended Kalman Filter (MEKF) and a Muliplicative Un-
scented Kalman Filter (UKF). Specifically, we have simu-
lated the stochastic dynamics of a spin stabilized satellite
and have applied advanced filtering techniques to esti-
mate the target state in the presence of measurement
uncertainties. After performing a thorough Montecarlo
simulation, we were able to conclude that the UKF per-
formed measurably better when estimating nonlinear
states with non-Gaussian noise. In addition, I applied
my solution to a real hardware testbed (SPHERES) and
showed that the UKF had preferred performance.

The results from this project have direct application on
upcoming SPHERES test session on the ISS. Future work
on this project will address some simplifications and as-
sumptions necessarily made here for simplicity.

• Actuator Modeling : The external forces and torques
generated by the satellites have been neglected in
this analysis. In the future if this filter is used dur-
ing satellite docking maneuvers, it will be preferred
to feed forward the thruster firing commands in the
filter.

• Free Floating Observer : The model presented
herein assumes a static observer and dynamic
targer. However, for satellite-satellite docking, both
agents are dynamic. It may make sense to separate
the dynamics of both bodies for more accurate mod-
elling.

• Process Noise: The process noise on the ISS is
expected to be marginally different than the pro-
cess noise for the flat floor demonstration. A thor-
ough characterization of the intensity should be es-
timated prior to use.

• Sensor Noise: Similarly, the sensor noise on the ISS
is expected to be a function of the lighting condi-
tions and other disturbances. A thorough charac-
terization of the intensity should be estimated prior
to use.

• Time Lag : There is no guarantee that the measure-
ments will be acquired regularly or that the ∆t will
be perfect because Linux is a non-real time operat-
ing system. There will be some non-deterministic
time lag in the system between measurement up-
date and thruster actuation. This should be taken
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into account as much as is reasonably possible prior
to use.

The filters may also be improved by implementing an out-
lier rejection algorithm that can identify and discard Type
I errors which provided a certain amount of estimation
latch-up. Also, it should be noted that the improvements
from the UKF do not come for ‘free’. The additional

sigma points added computation time for propagation
and filtering on the order of n. In the end, I was impressed
by the versatility of these filtering techniques and intend
to use them in future estimation problems throughout my
career. The methodology presented in this paper may be
scaled to future manned or unmanned missions to LEO,
the Moon, Mars and beyond.
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Appendices

A Additional Mathematical Definitions

A.1 Quaternion

A unit quaternion is a four element representation of the attitude of an object. It consists of a vector and scalar
elements that are related to the Euler axis and Euler angle of rotation as follows. Also as a unit quaternion, it obeys
the unit length constraint.

q =

[
qv
q4

]
=

[
e sinφ/2
cosφ/2

]
(82)

|q|2 = |qv|2 + q2
4 = 1 (83)

Quaternion multiplication is a noncommunative operation that can be defined as either a matrix-vector product or
compacted in vector notation. I have defined va and vb as the vector parts of the quaternions qa and qb with q4 as
the scalar element of each.

qa ⊗ qb =


qa4 −qa3 qa2 qa1

qa3 qa4 −qa1 qa2

−qa2 qa1 qa4 qa3

−qa1 −qa2 −qa3 qa4



qb1
qb2
qb3
qb4

 =

[
va × vb + q4avb + q4bva

q4aq4b − va • vb

]
(84)

We also introduce the tranform from 1-2-3 Euler angles to quaternions which is needed for measurement noise
generation. The solution is provided in [2].

q123(φ, θ, ψ) =


cφ/2cθ/2cψ/2 + sφ/2sθ/2sψ/2
−cφ/2sθ/2sψ/2 + sφ/2cθ/2cψ/2
cφ/2cφ/2sθ/2 + sφ/2cθ/2sψ/2
cφ/2cθ/2sψ/2 − sφ/2sθ/2cψ/2

 (85)

A.2 Inertia Definition

The inertia tensor collects the mass moments of inertia of a rigid body in matrix form. The moment of inertia
Ixx, Iyy, Izz measure the resistance to rotational accelerations along the x,y,z axes. The products of inertia, the
off-diagonal elements of the inertia tensor, are a measure of the induced acceleration around the second axis provided
an acceleration input in the first axis. The inertia tensor is a symmetric matrix.

(Ixx)O =

∫
m

(y2 + z2)dm (Iyy)O =

∫
m

(x2 + z2)dm (Izz)O =

∫
m

(x2 + y2)dm

(Ixy)O = (Iyx)O =

∫
m

(xy)dm (Ixz)O = (Izx)O =

∫
m

(xz)dm (Iyz)O = (Iyz)O =

∫
m

(yz)dm

A.3 Full Linearization of the Euler Dynamics

Proceeding with the linearization about ω̂ of Euler’s rotational dynamics, we can find the Jacobian, evaluate it at
the current best estimate and multiply by the inverse of the inertia tensor to solve for the rotational acceleration.
I have verified that this produces the same results as first multipying by the inverted inertia and then taking the
Jacobian.

ω̇ ≈ J−1

 Ixyω3 − Ixzω2 Izzω3 − Iyyω3 − 2Iyzω2 − Ixzω1 Izzω2 + 2Iyzω3 − Iyyω2 + Ixyω1

Ixxω3 + 2Ixzω1 + Iyzω2 − Izzω3 Iyzω1 − Ixyω3 Ixxω1 − 2Ixzω3 − Ixyω2 − Izzω1

Iyyω2 − 2Ixyω1 − Ixxω2 − Iyzω3 Iyyω12Ixyω2 − Ixxω1 + Ixzω3 Ixzω2 − Iyzω1


ω=ω̂

(86)
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B Visualization

A custom visualization was developed for this project to show the user or audience how the trajectory progresses
through time. A screen shot is shown in Figure 19 and a video has been presented during class. This helps in the
debugging process by seeing the mean motion in real time.

Figure 19: simulator
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C Additional Figures

Additional individual figures per state have been generated and populated in the published html report located in
the html subfolder.

C.1 Additional Simulation Results

C.1.1 Tracking
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Figure 20: Representative tracking of position states with full noise modeling.
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Figure 21: Representative tracking of velocity states with full noise modeling.
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Figure 22: Representative tracking of quaternion states with full noise modeling.
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Figure 23: Representative tracking of angular velocity states with full noise modeling.
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C.1.2 Errors
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Figure 24: Representative angular velocity error with full noise modeling.
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Figure 25: Representative angular velocity error with full noise modeling.
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Figure 26: Representative angular velocity error with full noise modeling.
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Figure 27: Representative angular velocity error with full noise modeling.
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C.2 Hardware Testing Results
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Figure 28: Position estimate of the state in the SPHERES hardware demo
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Figure 29: Velocity estimate of the state in the SPHERES hardware demo
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Figure 30: Quaternion estimate of the state in the SPHERES hardware demo
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Figure 31: Angular rate estimate of the state in the SPHERES hardware demo
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