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Nomenclature

M Magnetic dipole moment magnitude, A-m2

N Number of turns of wire
i Electric current
A Area of the coil
n̂ Normal vector to the coil
τ Torque induced on coil of wire
K Gain factor
k Iteration number
Hk Hessian matrix for iteration k
dk Search direction for iteration k
xk Current point for iteration k
γk Step size for iteration k
sk Parameter used to simplify BFGS update expression
yk Parameter used to simplify BFGS update expression
µ permeability of the core
µ0 Permeability of free space
µr Relative permeability of core material
r Core Radius
Vbus Voltage supplied to the torquer from the spacecraft bus
R Resistance of the wire
Nd Demagnetizing factor
l Length of torque rod
RCu Resistivity of Copper
aw Gauge of Copper wire
lw Length of wire
ρcore Density of Iron Ferrite core
ρCu Densit of Copper
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1 Problem Introduction

CubeSats are small, inexpensive research satellites that are usually launched as secondary
payloads. The CubeSat standard, proposed in 1999 by Standford University and Cal Poly,
specifies a 10 cm x 10 cm x10 cm per unit cube as a vehicle to support academic education
and frequent access to space. This platform is perfect for university-level exploration due to
its relative low cost and short design life cycles. In part, this is a result of the wide use of
commercial off-the-shelf electronics. CubeSats provide students with opportunities to have
real spaceflight hardware and software experience from their time in school.

The Michigan Exploration Lab (MXL) currently has three CubeSats in orbit with several
more proposed projects in the pipeline. MXL has already proposed CADRE, the Cube-
Sat investigating Atmospheric Density Response to Extreme Driving, which will be one of
the first CubeSat missions funded through the National Science Foundation (NSF). Most
flight hardware will be built in-house in Ann Arbor, except for the primary science payload.
CADRE will carry WINCS, the Wind Ion Neutral Composition Suite, in order to record
the global dynamics of the thermosphere and ionosphere. Armada, the follow-on mission
to CADRE, will consist of 48 CADRE satellites in 6 orbital planes. The simultaneous data
measurements collected by Armada will improve tracking of orbital objects for both situa-
tional awareness and orbital collision prevention and improve GPS reception in polar areas.

The success of the CADRE mission hinges on a reliable, capable Attitude Determination
and Control System (ADCS). This report will explain the motivation for magnetic torquers
and their requirements, detail the optimization method for our proposed torquer design, and
discuss the design space and future work.

1.1 Active Control on CubeSats

Attitude control of a CubeSat can be accomplished two ways: actively and passively. Passive
stabilization constitutes permanent magnets, gravity gradient, or differential drag. It is the
most popular control method for the CubeSat platform as it requires minimal to no on-board
power or processing. It’s simplicity also ensures a robust system design, however it is difficult
to meet high pointing accuracy requirements with this form of stabilization. Active control
increases the complexity of the mission but can ensure high pointing accuracies. Magnetor-
quers, momentum/reaction wheels, reaction control thrusters, control moment gyros, and
spin stabilization are examples of active control systems and actuators.

In order for CADRE to be successful, the principal investigator Professor Aaron Ridley
has dictated a 1 degree pointing accuracy requirement (2 degree cone) with 0.1 degrees of
attitude knowledge. This will ensure that the heavy ions enter WINCS with a known (or
deterministic) relative trajectory. To achieve this level of accuracy, CADRE will employ
three orthogonal momentum wheels (for control), a three-axis magnetic control system (for
wheel desaturation), and a full suite of determination sensors including: a star tracker, two

3



coarse sun sensors, three high precision rate gyroscopes, photodiodes, and magnetometers [?].

If CADRE flew today, it would be the most advanced CubeSat ever launched. The only com-
mercial packages being purchased are the Sinclair momentum wheels, a Boeing Star Tracker,
the sun sensors and the WINCS instrument designed by the Naval Research Laboratory
(NRL). However, the three magnetorquers are being designed by the Michigan Exploration
Laboratory, which reduces mission costs, increases the technology heritage of the MXL, and
gives students hands-on experience in design and assembly.

1.2 Review of Magnetorquers

A magnetorquer consists of a coil of wire that produces a rotational torque when an electric
current is passed through the coil. This is similar to an inductor. Unlike inductors, which
are wound to produce maximum inductance, magnetorquers are wound to provide maximum
rotational torque on the coil. For CADRE, the torquers will provide momentum dumping
for the reaction wheels and will work on three axes. Active magnetic control has several
important advantages:

� Low power consumption and low mass

� Suitable for restricted volumes due to custom design possibility

� No moving elements

� Slow transient response due to low torque production capacity

� Uncertainty in magnetic field model and errors in measurements can lead to unstable
control. Even the most accurate models (such as IGRF) are only approaching reality.

The magnetic dipole moments produced by the magnetorquers are proportional to the electric
current running through them. The magnetic dipole, M , produced by an air core is defined
by:

~M = NiAn̂ (1)

Here, N refers to the number of turns, i is the electric current, A is the area of the coil, n̂ is
the normal vector of the coil. If the magnetic moment vector of the spacecraft is not aligned
with the Earths magnetic field, a torque is induced on the coil of wire defined by the cross
product:

~τ = ~M × ~B (2)

1.3 Vacuum Core vs. Solid Core

Introducing a ferrite core in the magnetic torquer increases the dipole moment of the solenoid
by up to 3000 times (gain factor K=100-3000). To reach the same dipole moment with an
air core magnetic actuator, you need to either increase the enclosed area/number of turns
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(and thus mass) or increase the current flowing through the windings (and thus power). The
previous equation for magnetic moment is modified to:

~m = KNi ~A (3)

Here, K depends on the length/diameter shape factor and permeability of the material.

1.4 History of MXL Magnetic Control

The Michigan Exploration Lab has successfully launched three CubeSats in the past three
years (RAX, RAX-2 and M-Cubed). All three used AliNiCo-5 permanent magnets for atti-
tude stabilization. M-Cubed-2, a follow on mission, to be delivered to the launch provider
in May, employs a single air-core magnetorquer. The M-Cubed-2 magnetorquer was not
optimized for magnetic moment, power or mass. It was intended as a pathfinder to demon-
strate flight fabrication processes. The design was chosen by examining the design space and
subjectively selecting a configuration that satisfied requirements.

The coil was manufactured from white acetal Delrin, shaped by Professor Washabaugh’s
laser cutter. The coil was designed in layers less than 0.25 inches (the maximum laser cutter
height). After the mount was assembled, the 30 AWG wire was hand-wound to 193 turns
for a designed magnetic moment of 0.36 A −m2. After winding, the coil was dunked in a
3M ScotchCast solution that rigidly locks the wire down, while also adding additional envi-
ronmental protection. This same manufacturing procedure will be repeated for the CADRE
torque rods. It is important to understand the physical and mechanical limitations before
engaging in optimization.

2 CADRE Requirements

When CADRE was first explored in the AEROSP 483 class of 2011, the team base-lined the
commercially available CubeTorquer from ISIS. The estimated magnetic moment, mass and
power consumption of the rod was about 0.2 A −m2, 30g and 200 mW. All of the power,
mass, and data budgets were evolved from those specifications. After the magnetorquer
fabrication procedure was proven on M-Cubed-2, the decision was made to fabricate the
CADRE torquers in-house. Thus, the requirements imposed on the custom torquers are

1. Mass shall not exceed 30 g per axis

2. Power consumption shall not exceed 200 mW per axis

3. All three coils must fit comfortably in the CADRE 3U form factor

4. The magnetic moment shall pass all simulations done using the control algorithms
implemented in the MXL’s Matlab/Simulink/C++ propagator.
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To date, the simulations have been run using a magnetic dipole moment of exactly 0.05
A − m2. The magnetorquers are only required to desaturate the wheels. However, in the
event of a wheel failure, it would be ideal for the magnetorquer to be capable of re-orienting
the satellite. For this to be feasible, the dipole strength of the magnetorquers must be able
to overcome the environmental disturbance torques acting on CADRE. Table 1 summarizes
the peak order of magnitude disturbances that CADRE must over come. The derivations
can be found in Appendix A

Torque Type N · m
Residual Dipole Torque 4.00×10−7

Aerodynamic Torque 6.97×10−9

Gravity Gradient 1.75×10−9

Solar Pressure 1.64×10−9

RMS Sum 4.1×10−7

Table 1: Estimated external torques for the CADRE CubeSat

These results are corroborated with the conclusions from AAU Sat and the CalPoly PolySat.

2.1 Literature Review

As a sanity check, a brief literature review was performed to compare the ideal magnetic for
CADRE (0.2 A −m2) with other magnetorquers that have flown on CubeSats in the past.
Table 2 summarizes as many designs as could be found freely on the web. It is clear that
0.2 A−m2 is a reasonable design choice and has heritage on previous missions.
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Mission Type Magnetic
Moment
(A-m2)

Power
(mW)

Mass (g) Size Notes

AAUSat Air Core 122 20 8cmx9cm X-Sec A=10mm2,
C=356mm,
R=100 ohms,
Vbus=10V

AAUSat-3 Iron Core 0.03 6.8 19 200 -
CanX 2 3 Air Cores 0.1 40 100 XXX 5-35◦C, built own

winder
COMPASS-
1

Air Core 0.085 26 19.2 400 turns -

U Toronto
GNB

Air Core 0.19 26 104 210 turns -

GNB (2) XXX 0.19 21 108 235 turns -
Illinois, ION Air Core 0.149 100 XXX 1500

turns
1.32e-8 m2 X-
sectional area,
f Belden heavy
armored poly-
thermaleze 38
AWG

Illinois,
TinySat

PCB Traced XXX 114mA XXX 120 loops R=96.3Ω, 0.0007
in wire

CalPoly
PolySat

PCB Traced - 300mA - 54 turns 0.1503 m2

Cute 1.7 3 Air Core 0.15 91 5 58.5 x
78.3 mm

2U Cubesat, 1
coil, 13mA drive
current

SwissCube 3 Air Core 0.0285 - - - Bdot and LQR
ISIS Alloy Core 0.2 200 30 7 cm x 1

cm
-35 to 75◦C, 1200

CubeTorquer Iron Core 0.2 209 22 6 cm x 1
cm

Supra50 core,
1200 Euro

Table 2: Summary of CubeSat magnetorquers

3 Mechanical Design

The three CADRE magnetorquers were designed to integrate easily into the CADRE bus
structure without taking up too much volume. As a first step, a variety of designs were
surveyed to see what would be the best fit for the mission architecture, several of which can
be seen in Figure 1.
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Figure 1: An survey of various mechanical designs for torque rods

We also considered inscribed magnetorquers, which are copper traces inscribed in PCB layers.
However, the cost, complexity in routing, and lack of heritage ruled it out. After much
consideration, the design that we settled on consists of two iron core X-Y torque rods and an
air core z-axis coil. In this way, all three magnetorquers can fit onto the same PCB called the
Torquer Control Board (TCB). The TCB will also be designed to be the “connector hub”
for a variety of connectors in the ADCS bay. Figure 2 indicates the proposed mechanical
design for the X-Y torque rods.

Figure 2: Proposed mechanical design with free variables called out (core length, diameter,
turn count and wire gage)

Optimization techniques were employed to size the two iron core X-Y torque rods. There
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were four free variables open in our design: core length, core diameter, number of turns, and
wire gauge. All other variables (wire length, mass, current, power, magnetic moment) can
be derived from these four. In the scope of the following analysis, the wire gauge has been
fixed as 40 AWG for the X-Y torque rods.

4 Optimization Method

The method for determining the optimal magnetic torquer design for the X-Y axes is de-
scribed in the following subsections. The design space focuses on maximizing the magnetic
dipole moment of the torquers while constraining the number of turns, radius of the core,
and the length of the torquer. The Matlab fmincon was used to find the values of these
variables that both satisfied the constraints and maximized the magnetic dipole moment
expression.

4.1 fmincon

Matlab contains an Optimization Toolbox that contains functions of typical optimization
algorithms. The function used for the optimization of the CADRE magnetic torquers was
fmincon. The command solves constrained nonlinear optimization problems by finding the
constrained minimum of a scalar function of multiple variables based on a provided initial
estimate [?]. The command for fmincon includes the function to be optimized, the initial
estimate of the maximizer, and the constraints. The Matlab command for the sizing of the
magnetic torquers was as follows:

[x,fval]=fmincon(’core’,[100; 0.3e-2;5e-2; 100],[],[],[],[],[],[],’mycon’,options)
core was the name of the Matlab function created to maximize the magnetic dipole moment
(in units of A-m2); mycon was a function that contained the constraints on the variables;
options designated the maximum function evaluations, tolerances of the function, tolerances
of the maximizer, and iterations for the optimizer; and [100; 0.3e-2;5e-2] was the intial guess
(100 turns of the wire, 3 mm radius of the core, and 5 cm length of the core).

4.1.1 Algorithm

fmincon uses a sequential quadratic programming (SQP) method which essentially steps
through a quadratic programming ”subproblem” for each iteration. During each iteration, an
estimate of the Hessian of the Lagrangian is updated using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) formula [?]. The BFGS method is a Quasi-Newton method that can be
considered a generalization of the secant method [?], and was discussed in lecture Module 4.
Essentially, the method depends on the Hessian matrix, Hk, the point xk, the step-size γk,
and the search direction dk. The BFGS steps are described as follows [?]:

1. Specify an initial H0 and x0. If the user does not specify H0, then the BFGS method
uses the default H0 = I
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2. For each iteration (k = 0, 1, 2, ...).

(a) End if xk is optimal (when the gradient is zero, which is the necessary condition
for optimality).

(b) Solve Equation 4 to determine the search direction dk.

(c) Use a line search method to determine the step size γk >0 (instead of γ = 1),
which ensures that the Wolfe conditions are satisfied for each step of the iteration.
Typically, a mixed quadratic/cubic line search procedure is used to determine γk.

(d) Update the point, xk+1 using Equation 5.

(e) Compute Hk+1 using the BFGS update, Equation 6.

f ′′ (xk) dk = −∇f (xk) (4)

xk+1 = xk − [f ′′ (xk]
− 1∇f (xk) (5)

Hk+1 = Hk +
yky

T
k

yTk sk
− (Hksk)(Hksk)

T

sTkHksk

yk = ∇f (xk+1)−∇f (xk)
sk = (xk+1 − xk)

(6)

The BFGS is a rank two update formula that maintains symmetry and positive definiteness
of the Hessian, which ensures that the search direction, dk, is always a descent direction. A
line search is then performed using a merit function and the subproblem is solved using an
active set strategy [?].

4.1.2 Limitations

There are several limitations of the fmincon function [?]:

� fmincon can only be used for real variables.

� The function to be minimized/maximized and the constraints must be continuous.

� fmincon may only solve the local solution.

� If the problem is infeasible, fmincon will attempt to minimize the maximum constraint
value.

� The objective and constaint functions must be real-valued (i.e. they do not return
complex values).
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4.2 Physical Equations and Variables

The expression for the magnetic dipole moment contained in core is described by Equation
7 [?].

f(x) = M =
πr2NVbus

R

(
1 +

µr − 1

1 + (µr − 1)Nd

)
→ max (7)

Where r is the radius of the core of the torquer and is one of the variables defined by x; N is
the number of turns of the wire and is one of the variables defined by x; Vbus is the voltage
supplied to the magnetic torquer by the spacecraft bus, a constant 8.2 V; µr is the relative
permeability of the core material, a constant 2000; Nd is the demagnetizing factor described
by Equation 9; R is the resistance of the wire described by Equation 10 [?].

µr =
µ

µ0

(8)

Nd =
4[ln

(
l
r

)
− 1](

l
r

)2 − 4 ln
(
l
r

) (9)

R =
2πrNRCu

aw
(10)

The resistance of the wire depends on the resistivity of Copper, RCu = 1.55x10−8 Ω−m, and
the gauge of the Copper wire, aw = 7.97x10−9m2. The variables of x are constrained within
the function mycon. The constraints for this problem set-up are inequality constraints,
described by Equation 11, where ρcore is the density of the core (Iron Ferrite), 8.74x103

kg/m3; ρCu is the density of the Copper wire, 8.93x103 kg/m3; and lw is the length of the
wire described by Equation 12.

h1(x) = ρcoreπr
2l + awlwρCu − 0.03 ≤ 0

h2(x) =
V 2
bus

R
− 0.2 ≤ 0

h3(x) = N − 10, 000 ≤ 0

h4(x) = r − l ≤ 0

(11)

lw = 2πrN (12)

There are four inequality constraints for sizing the magnetic torquers:

1. h1(x) constrains the mass to be less than 30 grams to meet the mass requirement of
the magnetic torquer.

2. h2(x) constrains the power consumed by the magnetic torquer to be less than 200 mW
to meet the requirements.
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3. h3(x) constrains the number of turns to be less than 10,000, the maximum number
deemed reasonable to manufacture.

4. h4(x) constrains the radius of the core to be less than or equal to the length of the
torquer, which defines the reasonable design space region.

4.3 Comments on Design Space

Although the proposed problem may seem like a very straight forward minimization problem
(maximize magnetic moment subject to mass and power constraints), the design space is
relatively complex. As shown in Figure 3, the function is not strictly convex. In fact, to
get reasonable solutions, we constrained fmincon to only consider the designs with length
greater than or equal to rod radius.

Figure 3: The function is not strictly convex.

It should be noted that most of the magnetic torquer mass is from the core/mount and not
from additional wire length since the gauge of the Copper wire has a very low mass per
unit length. Additionally, several trials were run to determine whether or not altering the
constraints of system would yield more optimal results in terms of mass and power (CubeSats
are greatly constrained in mass and power due to the small platform). Table 3 provides an
sample of the many trials that were run and the yielded results. The proposed torquer design
is ROW 1 in the Table.
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CONSTRAINTS RESULTS

Power Mass Length (cm) DIPOLE Mass Power Turns Radius (mm) Length (cm)

200mW 30g 5cm 0.217 30g 200mW 7.66k 3.59mm 5cm

100mW 30g 5cm NO Solution

100mW 50g 5cm No Solution

150mW 50g 5cm 0.193 50g 150mW 7.416k 4.9mm 5cm

100mW 50g 3cm 0.107 49g 100mW 9.9k 5.5mm 3cm

300mW 50g 2cm 0.1064 32g 298mW 2.94k 6.3mm 2.2cm

200mW 30g 2cm 0.0707 18.2g 200mW 8.404k 3.3mm 2cm

Table 3: Trials of different constraints defined in mycon

From the trials it was clear that smaller magnetic dipoles would not save much mass or
power for the system. This alludes to the complexity of the design space. Figure 4 from the
M-Cubed-2 design simulations shows the same trends that are applicable to CADRE.

Figure 4: The trends for the M-Cubed-2 air core also apply to the design space of CADRE.

Increasing the wire gauge (smaller area) reduces the power (higher resistance). However, for
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the same magnetic moment, a smaller qire gauge requires more turns → which requires an
increased wire length → increases resistance → decreases current → requires more turns.
Turn count and mass reach infinity → infeasible range has no solution. This behavior was
similarly observed in the CADRE optimization script. There were some constraints that did
not have a solution. One must realize that simply decreasing the required magnetic dipole
moment may not reduce power/mass and make such designs feasible!!

5 Proposed Design

The proposed design for the magnetic torquers was the result of the first trial constraints
listed in Table 3. The constraints were that the power had to be less than 200 mW, the mass
less than 30 g, and the length of the torquer had to be less than 5 cm. These constraints
resulted in a magnetic dipole moment of approximately 0.22 A-m2 based on a torquer that
had 7.66x103 turns, a core radius of 3.59 mm where the power, mass, and torquer length
constraints (h1 - h3) were active. h4(x) was not active, but the constraint was met.

The z-axis air core magnetorquer will be nearly identical to the M-Cubed-2 flight mag-
netorquer, only with a smaller wire gauge. The optimization tools demonstrated in this
paper will be adapted to meet requirements in this third axis. Since the z-axis lacks a ferrite
core, some of the assumptions used to derive Equation 7 break down, which would require a
new Matlab script to be written. This will be accomplished in early May.

5.1 Z-Axis Design

Reference “mcubed magnet.pdf”

6 Fabrication Procedure

for scotchcast dunking etc review “MCubed-2 Fabrication Procedures.pdf”. A couple of new
things. need to learn how to use the winder.
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Figure 5: The trends for the M-Cubed-2 air core also apply to the design space of CADRE.

winder settings

7 Contributions

I identified the optimization problem and developed the method for finding the solution in
Matlab. Jessica Arlas was able to review my code and made a couple of improvements on
the constraint functions. Jessica also discussed the opimization method and commented on
the design space. I completed the rest independently.
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Appendices

A Order of Magnitude Torque Disturbances

The worst case torque generated by environmental disturbances is used to size the permanent
magnet/magnetorquer. M-Cubed must overcome the worst case torque in order to control
the satellite in any given situation. Although it is unlikely that M-Cubed-2 will be exposed
to the worst case torque in space (all disturbances acting in the same direction), we still sum
the torques from the [residual dipole, gravity gradient, atmospheric drag, and solar radiation
pressure].

Magnetic Disturbance Torque
Magnetic dipoles stem from two sources. First, they can occur transiently from the on-
board electronics–especially high-current modules such as radios. Also, the structure of the
spacecraft may contain a residual dipole that can also be a source of unwanted disturbance
angular moments. As a rule of thumb, residual dipole moment on spacecraft is around 0.01
A-m2.

~BEarth =
µ0M

4πr3

√
1 + sin(λ)2 (13)

Where µ0M
4π

is the magnetic dipole moment from the Earth, R is the distance to center of
the Earth, λ is the magnetic latitude.

Tres = ~Mres · ~BEarth = 0.01Am2 · 4× 10−5T = 4× 10−7Nm (14)

Where ~Mres is the residual dipole of the spacecraft.

Gravity Gradient

Tg = (Imax − Imin)3n2
max = (0.0005kg ·m2)3(0.00108

rad

s
)2 = 1.75× 10−9Nm (15)

Where I is the principle moment of inertia in that axis, and n is the angular rate of orbit.

Atmospheric Drag Force

Fd =
1

2
ρv2CdA( ~N · ~D) (16)

Where ρ is the atmospheric density at the orbit altitude, ~N is the normal vector of the body
face, Cd is the coefficient of drag, A is the cross sectional area, and v is the velocity relative
to atmosphere.

Atmospheric Drag Torque

τ = P × Fd =
1

2
(4.89× 10−13

kg

m3
)(7550

m

s
)22.5(0.01m2)0.02m = 6.97× 10−9Nm (17)
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The torque then, is generated by the cross product of P , the lever arm, which is the distance
between center of aerodynamic pressure and geometric center (<2cm by CubeSat require-
ments) and the atmospheric drag force, Fd.

Solar Radiation Pressure

TS =
φ

c2
A(1 +Q)(N · S)d =

1367 W
m2

3× 108

m

s
0.01m2(1 + 0.8)0.2m = 1.64× 10−9Nm (18)

Where φ is the universal solar constant; c, speed of light; Q, panel reflectance; S, sun vector
(gives angle of incidence)
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B Matlab Optimization Simulation

1 %University of Michigan
2 %Description:
3 % This program maximizes the magnetic moment for the CADRE x−y ferrite
4 % magnetorquers subject to mass and power constraints. The free
5 % variables are core length, core diameter, wire length and wire gauge.
6

7 clear all
8 close all
9 clc

10

11 options = optimset('MaxFunEvals',10ˆ3, 'MaxIter', 10ˆ3, 'TolFun', ...
10ˆ−15, 'TolX', 10ˆ−15);

12 [x,fval]=fmincon('core',[100; 0.3e−2;5e−2; ...
100],[],[],[],[],[],[],'mycon',options)

13 display('hi')

1 function [ M total ] = core( x )
2 %UNTITLED3 Summary of this function goes here
3 % Detailed explanation goes here
4

5 N=x(1);
6 r=x(2);
7 l=x(3);
8 %Rseries = x(4);
9

10 awg=[0.00797]*10ˆ−6; %awg of chosen wire
11 Vbus=8.2;%V
12 CoreDens = 8.74e3; %kg/mˆ3
13 CuDens=8.93e3; %kg/mˆ3
14 CuRes=1.55*10ˆ−8; %Ohm−meter, Resistivity
15 Wres= CuRes/awg;
16 mu r=2000;
17 l w=N*pi*2*r;
18 R=Wres*l w;% + Rseries;
19

20 Nd = 4*(log(l./r)−1)./((l./r).ˆ2 − 4*log(l./r));
21 % M total = −(r*Vbus/2/Wres .* (1+(mu r−1)./(1+(mu r−1).*Nd)))
22 M total = pi*rˆ2*N*(Vbus/R)*(1+(mu r−1)/(1+(mu r−1)*Nd))
23

24

25 mass=CoreDens*pi*r.ˆ2.*l+awg*l w*CuDens
26 P = Vbusˆ2/R
27 l w=N*pi*2*r
28 R=Wres*l w;
29

30 end
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1 %% Iron Core Magnetorquers for CADRE
2 % Duncan Miller
3 clear all
4 close all
5 clc
6

7 aw=[0.205 0.129, 0.102, 0.0810, 0.0642, 0.0509, 0.0404, 0.0320, 0.0254, ...
0.0201, 0.0127, 0.00797, 0.00501]*10ˆ−6; %%%%%% American Wire Gauges ...
in mmˆ2

8 gage=[24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38,40]; %Wire Gauge ...
numbers

9 CuDens=8.93e3; %kg/mˆ3 Density of Copper
10 CuRes0=1.55*10ˆ−8; %Ohm−meter, Resistivity of copper
11 CuTempRes=3.9e−3; %Kˆ−1, Temp coefficient of copper
12 T=0; %change in Temperature from T=293K (20C)
13 CuRes=CuRes0*(1+dT*CuTempRes); %Temperature dependent Resistivity of ...

copper
14 Vbus =8.2; %Bus supply voltage (from V batt)
15 Pmax = 0.75; %W Max power allowable
16 CoreDens = 8.74e3 %kg/mˆ3 Density of iron core
17

18 % Radius
19 % rmin=0.005;
20 % rinc=0.001;
21 % rmax=0.03;
22 % lmin=0.02;
23 % linc=0.001;
24 % lmax=0.1;
25 % zmin=0;
26 % zmax=2;
27

28 rmin=3e−3;
29 rinc=1e−4;
30 rmax=6e−2;
31 lmin=3e−3;
32 linc=0.001;
33 lmax=0.06;
34 zmin=0;
35 zmax=0.6;
36

37 awg=aw(12);
38

39 [r, l]=meshgrid(rmin:rinc:rmax, lmin:linc:lmax);
40 mu r= 2000; % relative permeability of the core material
41

42

43 Rmin = Vbusˆ2/Pmax;
44 Wres= CuRes/awg;
45 l w = Rmin/Wres; %Total length of wire
46 mass=awg*l w*CuDens
47 N = l w/2/pi./r;
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48 Nd = 4*(log(l./r)−1)./((l./r).ˆ2 − 4*log(l./r));
49 M total = r*Vbus/2/Wres .* (1+(mu r−1)./(1+(mu r−1).*Nd));
50 mass=CoreDens*pi*r.ˆ2.*l+awg*l w*CuDens;
51

52 surf(r,l,M total, 'EdgeColor', 'none')
53 axis([rmin rmax lmin lmax zmin zmax])
54 xlabel('Core Radius (m)')
55 ylabel('Core Length (m)')
56 zlabel('Magnetic Dipole Moment (A−mˆ2)');
57 %{
58 figure(2)
59 surf(r,l,N, 'EdgeColor', 'none')
60 axis([rmin rmax lmin lmax 100 5000])
61 xlabel('Core Radius (m)')
62 ylabel('Core Length (m)')
63 zlabel('Number of Turns (A−mˆ2)') %%%%%% I think you want to change ...

this unit to (−) %%%%%%
64

65 figure(3)
66 surf(r,l,mass, 'EdgeColor', 'none')
67 axis([rmin rmax lmin lmax 0 0.3])
68 xlabel('Core Radius (m)')
69 ylabel('Core Length (m)')
70 zlabel('Mass (kg)')
71

72 %}
73 %% Calculations of Properties
74 clear all
75 clc
76 N=[13550] %count
77 awg=[0.00797]*10ˆ−6 %awg of chosen wire
78 l= [5] *10ˆ−2 %m
79 r= [0.73]*10ˆ−2 %m
80 l w=N*pi*2*r
81 Vbus=8.2;%V
82 CoreDens = 8.74e3; %kg/mˆ3
83 CuDens=8.93e3; %kg/mˆ3
84 CuRes=1.55*10ˆ−8; %Ohm−meter, Resistivity
85 Wres= CuRes/awg;
86 mu r=2000;
87

88

89 mass=CoreDens*pi*r.ˆ2.*l+awg*l w*CuDens
90 Nd = 4*(log(l./r)−1)./((l./r).ˆ2 − 4*log(l./r))
91 M total = r*Vbus/2/Wres .* (1+(mu r−1)./(1+(mu r−1).*Nd))
92 R=Wres*l w; %Total length of wire
93 P=Vbus.ˆ2/R

1 function [ C, Ceq ] = mycon( x )
2 %mycon University of Michigan
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3 % These are the inequality constraints for the CADRE torquer optimization
4 % script
5

6 %Free variables are the turn count, core radius and core length
7 N=x(1);
8 r=x(2);
9 l=x(3);

10

11 %A series resistance was considered to reduce current
12 %Rseries = x(4);
13

14 %Known constants
15 awg=[0.00797]*10ˆ−6; %awg of chosen wire
16 Vbus=8.2; %V
17 CoreDens = 8.74e3; %kg/mˆ3
18 CuDens=8.93e3; %kg/mˆ3
19 CuRes=1.55*10ˆ−8; %Ohm−meter, Resistivity
20 Wres= CuRes/awg; %Ohm/meter
21 mu r=2000; %Relative Permeability
22 Nd = 4*(log(l./r)−1)./((l./r).ˆ2 − 4*log(l./r));
23

24 %Wire length
25 l w=N*pi*2*r;
26 R=Wres*l w;%+ Rseries;
27

28 %Inequality Constraints
29 C(1)= CoreDens*pi*r.ˆ2.*l+awg*l w*CuDens−0.03; %mass is less than 30g
30 C(2)= Vbus.ˆ2/R−0.2; % power is less than 200mW
31 C(3)= −x(1)+10; %Number of turns is something reasonable
32 C(4)= x(1)−10000;
33 C(5)= −x(2)+3e−3; %Radius is something reasonable
34 C(6)= −x(3)+5e−2; %Length is something reasonable
35 C(7) = r − l; %Keep the design space in the feasible quadrant
36 %C(7) = −pi*rˆ2*N*(Vbus/R)*(1+(mu r−1)/(1+(mu r−1)*Nd)) + 0.05;
37

38 Ceq= [];%−x(3)+5e−2;
39

40 end
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