
CADRE

CubeSat Investigating
Atmospheric
Density

Extreme Driving

Response to

University of Michigan Nanosat-7 CDR Presentation

March 20, 2012 Ann Arbor, Michigan

Satellite Structure

Subsystem Summary

Metric	Criteria	Benchmarks	Documentation
Bus Design	-Custom structure designed to ease integration and streamline ground testing	Mass: 3.8 kg (W/out Contingency) 4.5 kg (With Contingency)	-CAD Model -Pressure Profile -Mass Budget -Faces and Coordinates
Hardware and Assembly	-Connector Mockup validates design and assembly procedure -Structural metal prototypes demonstrate rigidity	-Connector Mockup (3/20/12) -Metal Prototypes (4/20/12)	-Assembly Procedure Document -2D Part Drawings
Deployables	-Nicrome burn releases four torsion hinges (drives four wings and two monopoles)	-In House Custom Hinges -Carbon fiber from Dragon Plate	-Requirements and Verification Matrix
Testing	-Engineering Model subject to launch loads	-Vibrational Mode Testing (4/20/12)	-GANTT Chart
Modeling	-Computer analyses validates and steers design	[Following Presentation]	-Structural Analysis -Thermal

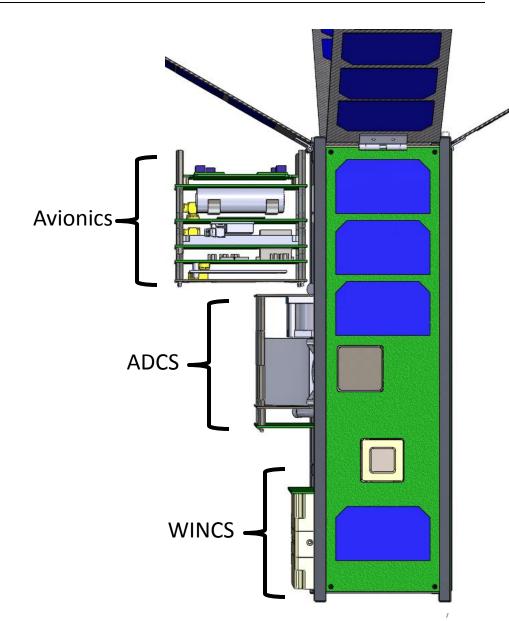
Structure Subsystem Requirements (1)

- STR 1 CADRE structure shall be compatible with a standard P-POD launch mechanism
- **STR 2** All structural drawings shall use the xyz coordinate system specified in figure 5 of CDS rev 12. Note that the -Z axis is inserted into the PPod first.
- STR 3 CADRE exterior dimensions shall not exceed 100mm +/- .1mm in the X,Y (short) directions
- **STR 4** CADRE shall be 340.5 mm +/-.3mm long. (Z direction)
- **STR 5** CADRE exterior shall not contact the PPod at any point except for designated rails. See Figure 5 CDS rev 12 for rail configuration
- STR 6 CADRE external rails shall have a width of at least 8.5mm
- **STR 7** CADRE external rail shall be rounded with a radius of at least 1mm.
- **STR 8** CADRE external rails shall be at least 255.4mm in length on each side.
- STR 9 CADRE external rails shall have a surface roughness of less than 1.6 micrometers
- STR 10 CADRE external rails shall have an area of at least 6.5mm x 6.5 mm on the +Z face
- STR 11 CADRE shall withstands a load of +/-20 g's in each axis without permanent deformation of any structural members
- STR 12 All CADRE structural elements shall have a factor of safety of 2.0 for yield strength and 2.6 for ultimate strength
- **STR 13** CADRE mass shall be less than 4000g.
- STR 14 CADRE structural elements shall mass less than 1300 grams
- STR 15 CADRE spacecraft shall have a fundamental frequency above 100 Hz
- STR 16 CADRE shall have a center of gravity within a 2cm sphere from its geometric center per section 2.2.17 of CDS-12.

Structure Subsystem Requirements (2)

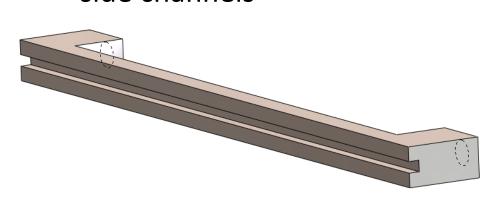
- **STR 17** All materials onboard CADRE shall adhere to outgassing and vacuum compatiblity requirements laid out in NS7 user guide
- **STR 18** All non metallic materials onboard CADRE shall have a maximum Collected Volatile Material Content (CVCM) of less than .1% and a Total Mass Loss of less than 1%. See NS7 User Guide 6.3.2 for further details
- STR 19 CADRE shall deploy solar panels to TBD degrees +/- TBD degrees
- **STR 20** All CADRE deployment components shall remain attached during launch, ejection, and operation per section 2.1.2 of CDS-12.
- **STR 21** The deployment mechanism shall not activate and deploy until at least 30 minutes after seperation from the Launch Vehcile
- STR 22 All main structural elements shall be made of Aluminum 7075 or 6061
- STR 23 All rails and standoffs, as defined in CDS rev 12, shall be hard anodized aluminum.
- STR 24 All deployables shall be constrained by the Cubesat and shall not touch the PPod.
- STR 25 DELETED
- **STR 26** CADRE structure shall allow for direct removal of all internal components without removing major structural elements or other subsystem components.
- STR 27 DELETED

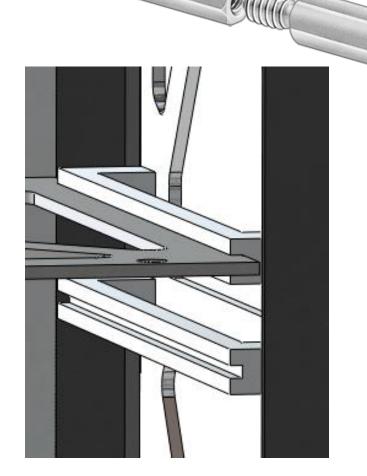
Mass Budget


CADRE Master Equipment List			Total Mass +
	Total CBE		Contingency
	Mass (kg)	Contingency	(kg)
WINCS (WNC)	580.0 g	15%	667.0 g
Structures (STR)	1395.7 g	15%	1598.0 g
Attitude Determination Control System (ADCS)	988.9 g	19%	1161.3 g
Electrical Power (EPS)	335.0 g	18%	382.0 g
Communications (COM)	270.0 g	15%	310.5 g
TOTAL	3883.5 g		4496.4 g
Systems Margin			3.6 g
Contingency			612.9 g

- Current best estimate: 3.88 kg
- Estimated mass with contingency: 4.49 kg
- Estimated mass meets P-POD design limit with negligible margin
 - Expect to request a mass waiver
 - Granted to past missions (QuakeSat-4.5 kg)
- Examining mass reduction trades (structural optimization, mission de-scope)

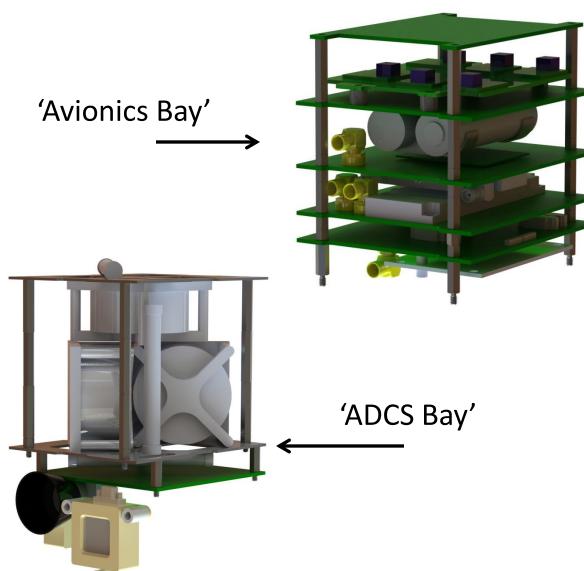
Design: Chassis


- Custom structure designed and manufactured by students, motivated by:
 - Heritage feedback
 - Deployable arrays
 - Custom ADCS architecture
- Pumpkin: payload enters through top and bottom faces
- Michigan: Avionics Bay, ADCS Bay, and WINCS slide in from the side

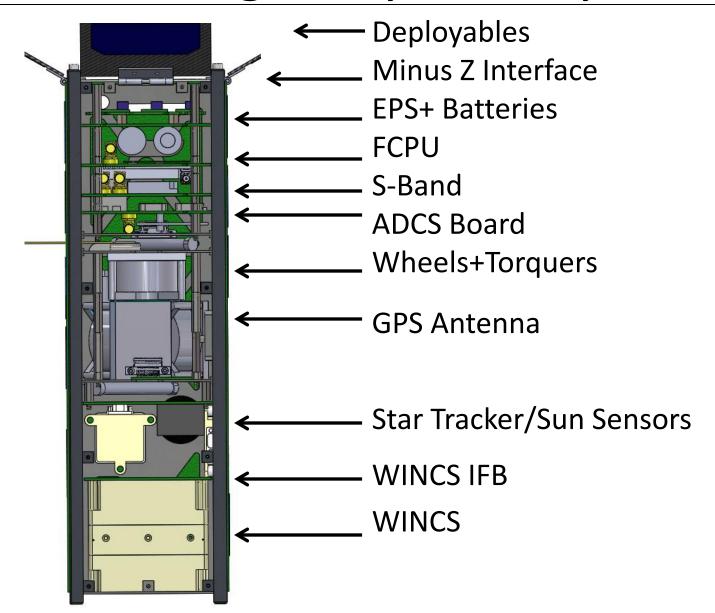


Design: Mounting

- Modular board stacking
 - Access to core electronics without total disassembly
 - Variable height standoffs optimize volume
- Continuous rails and panels anchor assembly together
- Load bearing plates slide in on side channels

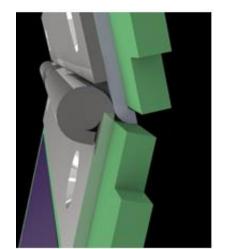


Design: Assemblies



Bus Structure

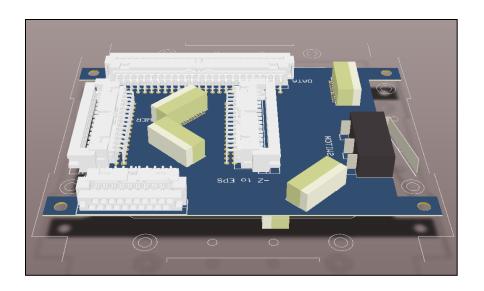
Design: Payload Layout



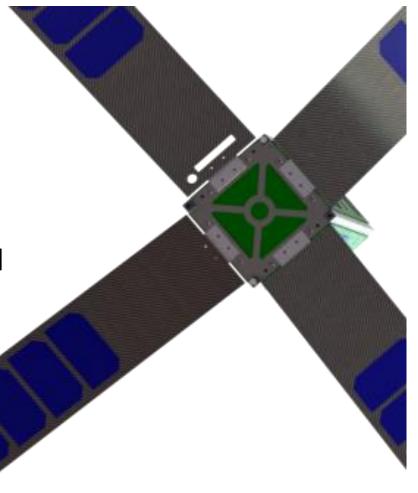
Design: Deployables

- Driver: Power requirements
 - Maximize surface area available for cells
- Driver: Structural loads (Vibration, thermal)
 - Motivates high strength, rigid material
- Driver: Mass constraints
 - Motivates investigation of carbon fiber panels
- Hardware: Dragonplate 1/16" sheets

- Driver: Delayed deployment
 - Wire burn deploys stowed panels30 minutes after launch
- Driver: Optimize available flux and passive stabilization
 - Hard stop to 120°
- Driver: Delicate solar cells
 - Low impulse (counteracting spring
- Hardware: Custom designed hinge

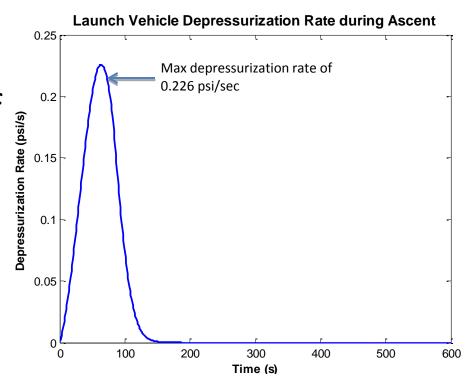


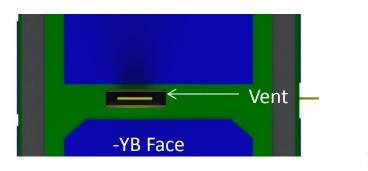
Analysis: Assembly and Test


- Laser cut/3D Printed connector model
 - Low cost, rapid prototype--3D printing readily available
 - Quick design iterations for identified interference
 - Validates CAD model and Assembly Procedure
- Reconcile Altium boards and connectors with CAD assembly
- Refine Assembly Procedure and iterate as necessary
- Groundworks for Metal Engineering Model

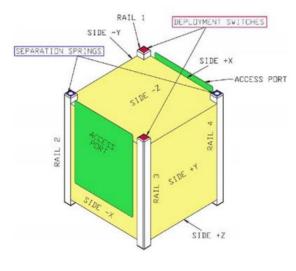
Critical Path Forward

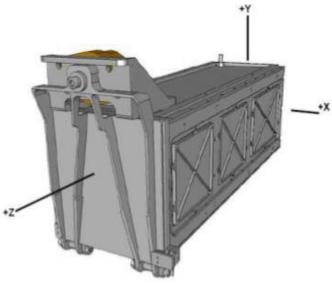
- Resolve Connector Mockup (interference, integration)
- Characterize custom hinges and Carbon Fiber panels
- Resolve WINCS environmental requirements
- Fabricate Engineering Model [End of Semester]
- Static and Vibe Testing [End of Semester]

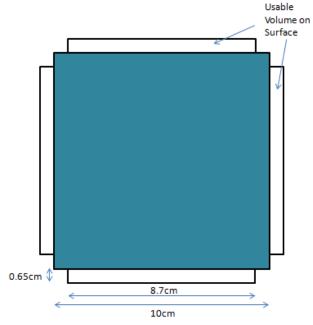



Backup Slides

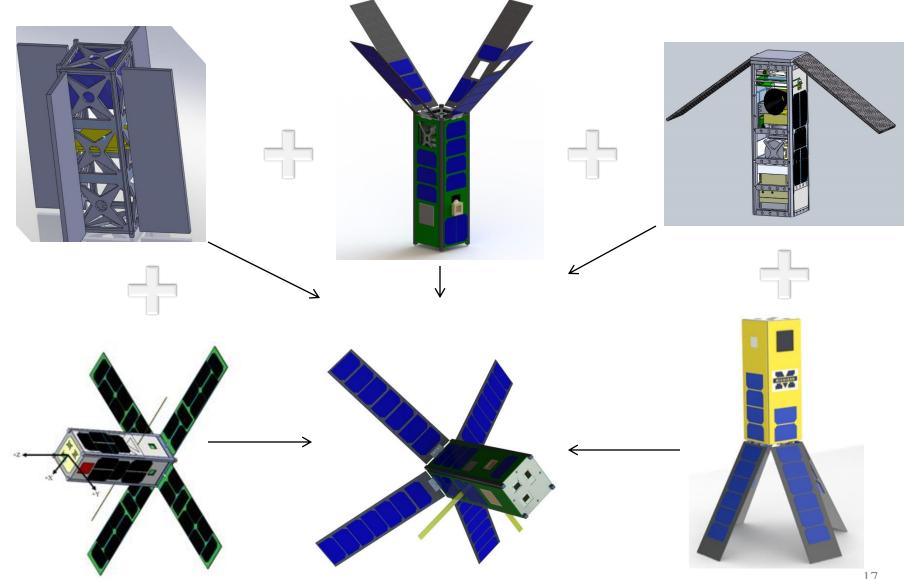
Pressure Profile


- CADRE exhibits a
 maximum
 depressurization rate of
 0.226 psi/sec, a factor
 of safety of 2 below the
 minimum 0.5 psi/sec
- CADRE vents through two identical 8x22mm hole that double as UHF antenna access





P-Pod Specifics



Iterative Hybrid Structure

L /

Break

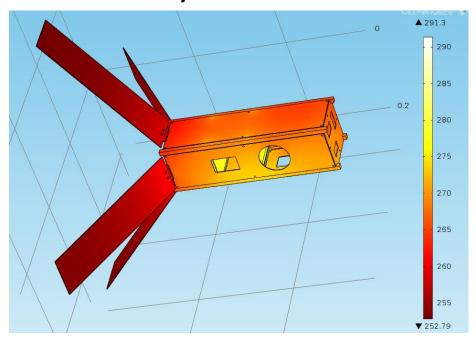
Time	Subject	
8:00 am	Introductions	
8:15 am	Mission Overview and Concept of Operations	
9:00 am	Payload	
9:30 am	Structure	Dro
10:00 am	Break	Pres
10:15 am	Thermal and Modeling	resu
10:45 am	Command and Data Handling	1636
11:15 am	Software	
11:45 am	Lunch (possibly a working lunch)	
12:45 pm	Electrical Power System	
1:15 pm	Attitude Determination and Control	
1:45 pm	Communications	
2:15 pm	Ground Station and Operations	
2:45 pm	Break	
3:00 pm	Ground Support Equipment	
3:15 pm	Configuration Management/Quality Assurance	
3:45 pm	Satellite Fabrication Course Implementation	
4:00 pm	Tour of Hardware and Facilities	
5:00 pm	Discussion and Review of Action Items	

Presentations will resume at 10:15.

Structural Modeling and Thermal Analysis

Structural Integrity Requirements

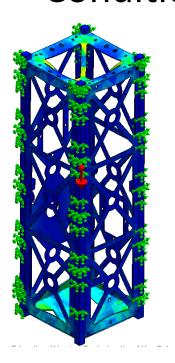
Number	Description
1	All Components will have a Margin of Safety > 0 for the following*:
1.1	20-G Load in the ±X, Y and Z directions based upon the Yield Stress with a Factor of Safety of 2
1.2	24-G Load in the ±X, Y and Z directions based upon the Ultimate Stress with a Factor of Safety of 2.6
1.3	All Pressurized Vessels based upon anticipated pressure with a Factor of Safety of 2 in Yield and 5 in Ultimate Stress
1.4	Temperature loading based upon temperatures ±10 Celsius greater/less than the projected maximum/minimum temperature
1.5	Vibrational analysis with a Factor of Safety of 1.67 in Yield and 2.17 in Ultimate Stress
2	
	Vibrational Analysis must result in a Fundament Frequency > 100 Hz

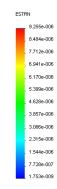

*Margin of Safety =
$$\frac{Allowable\ Stress}{(FS)*(Actual\ Stress)} - 1 \ge 0$$

Thermal and Pressure Loading

- No Pressurized components on board CADRE
 - Pressurized loading ignored
- WINCS instrument could potentially require pressurized container
 - Pressure loading calculations and simulations will take place if this becomes a requirement

- Thermal Loading
 - Based upon Thermal Analysis

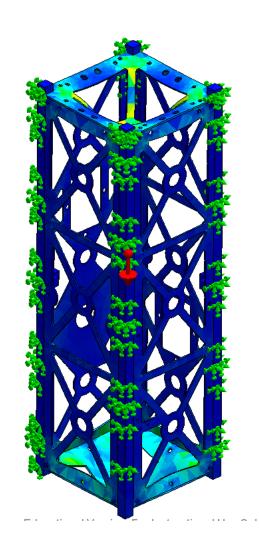




Finite Element Analysis: Initial Conditions

- ANSYS WorkBench, SolidWorks Simulation
 - 20-G Load ±X,Y,Z directions
- Assumptions/Simplifications
 - Simplified CAD imported from SolidWorks
 - Faces of Rails are Assumed to be fixed (on to P-Pod)
 - Components "Bonded" together if they are connected via screws
 - Components have "No Penetration" contact if they are touching but not attached to one another

 Loads and Boundary Conditions



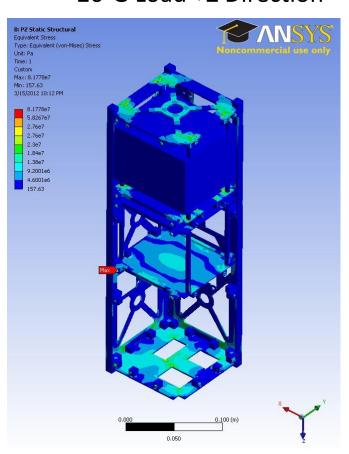
Iterated design MEETS ALL REQUIREMENTS. (First submission had multiple failure modes)

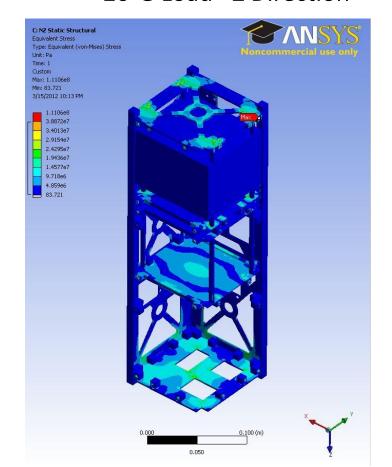
Structural Design: Updates since CDR Submittal

- The WINCS Faceplate was the primary point of failure
- Changes made to increase structural integrity:
 - +/- Z Faceplates increased in thickness
 - Additional attachment points (plateblocks) implemented for all load bearing aluminum plates including: +/- Z Faceplates, ADCS slider plates, Avionics slider plate
 - Lighter GPS antenna selected

Static Structural: Results

Worst Case Margin of Safety Summary

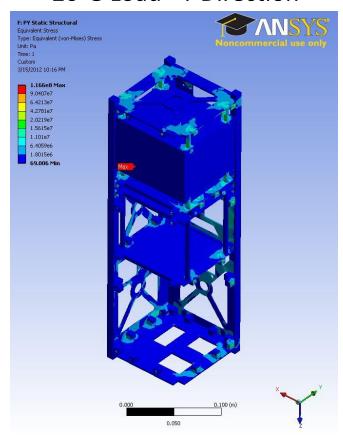

Component	Material	Load Case	Failure	Minimum Margin of	Revised Margins of
			Mode	Safety	Safety
+Z WINCS End Panel	Aluminum 6061	+ 20G Y-	Yield	-0.81	0.21
		direction			
-Z End Panel	Aluminum 6061	- 20G Y-	Yield	-0.73	0.62
		direction			
-Z Plate Attachment Blocks	Aluminum 6061	+ 20G X-	Yield	-0.61	0.31
		direction			
+Z plate attachment blocks	Aluminum 6061	+/- 20G Y-	Yield	-0.65	0.30
		direction			
Side Plates	Aluminum 6061	+/- 20G X-	Yield	-0.76	-0.04
		direction			
Hinges	Aluminum 6061	+/- 20G Y-	Yield	-0.77	N/A
		direction			
Support Rails	Aluminum 7075	- 20G X-	Yield	0.38	3.0
		direction			
Bay Sliders	Aluminum 6068	- 20G Z-	Yield	-0.5	1.86
		direction			
Side PCB Panels	PCB	+ 20G Y-	Yield	1.75	1.4
		direction			
Deployable Wings	Carbon Fiber	- 20G Y-	Yield	1.25	0.62
		direction			
Avionics Bay	PCB	+/- 20G Y-	Yield	-0.51	0.72
		direction			
ADCS Bay	Aluminum 6072	+/- 20G Y-	Yield	-0.43	1.023
		direction			

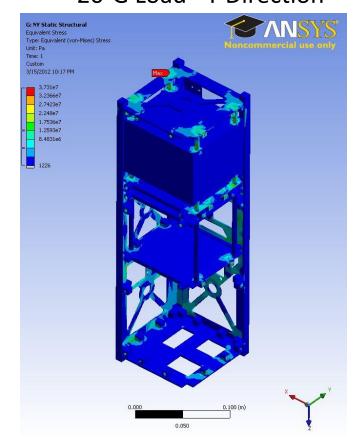

Static Structural: 20g Z-Direction

Worst case Margin of Safety of 0.23 on side-plate

20-G Load +Z Direction

20-G Load –Z Direction

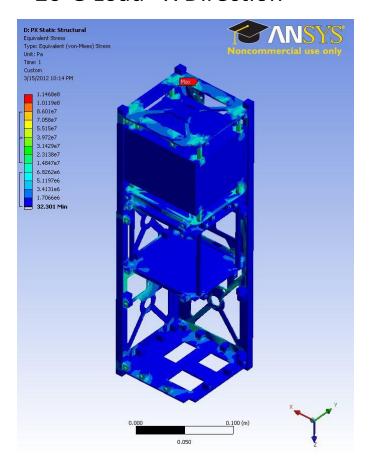


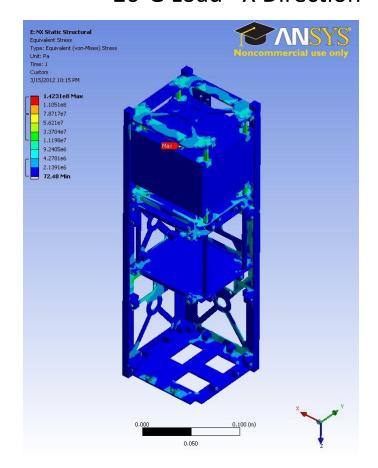

Static Structural: 20g Y-Direction

Worst case Margin of Safety of 0.21 on WINCS Faceplate

20-G Load +Y Direction

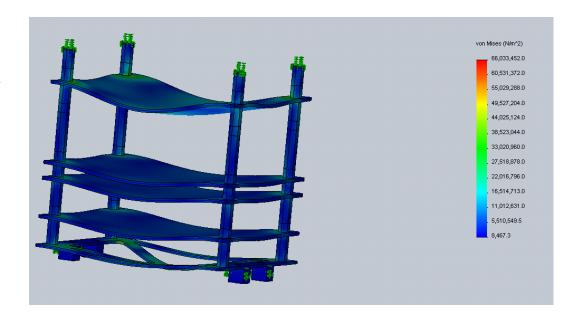
20-G Load -Y Direction




Static Structural: 20g X-Direction

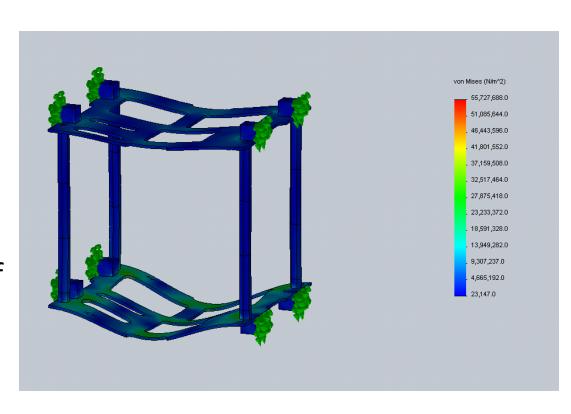
Worst case Margin of Safety of -0.04 on Sideplate

20-G Load +X Direction


20-G Load -X Direction

Static Structural: Component Bays

- Individual worst case simulations done on Component Bays in Solidworks Simulation
 - Due to Symmetry 20g
 ±X, Y direction loadings
 give similar results.
- Avionics Bay
 - Constrained by Standoffs attached to faceplate for top bay
 - Entire load of bay placed on single PCB board
 - Minimum Margins of Safety
 - 0.72



Static Structural: Component Bays

ADCS Bay

- Constrained by plateblocks attached to sideplate
- Entire load of bay placed on single
 Aluminum Plate
- Minimum Margins of Safety
 - 1.023

Vibrational Analysis

- Simulated Sine Sweep in ANSYS Workbench will be used to determine Fundamental Frequency and worst case stresses seen
- Static structural results must succeed before considering modal analysis
- First Pass fundamental frequency of 25 Hz shows sensitivity of analysis and significance of simplifications

Structural Design: Moving Forward

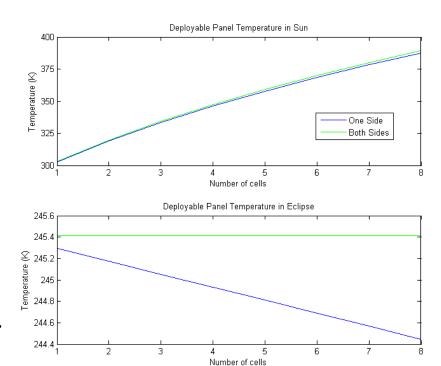
- Sun Sensor is cause of only point of failure in updated results
 - New Sensors being selected, and design updated pending selection
- Modal and vibrational analysis of successful design iteration.
 - Testing of Mock-Up
- Equivalent models in Solidworks Simulation and COMSOL will confirm results

Thermal Requirements

Number	Description	
SYS - 12	CADRE shall maintain thermal conditions per table:	

Number	Description
WINCS	-15C to 45C
Batteries	5C to 35C
Solar Cells	-35C to 80C
UHF Radio	-25C to 55C
S-Band Radio	-30C to 60C
Patch Antenna	-45C to 65C
CPU	-25C to 75C
Other Electronics	-35C to 80C

 Preliminary Analysis and Design Trades

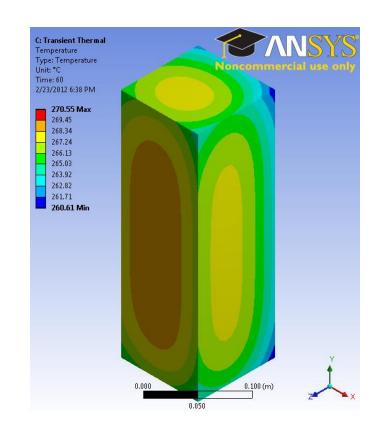

Body maximum and minimum temperatures

 Eclipse black body, Solar full power

Required absorptivity and emissivity ranges

Deployable panels

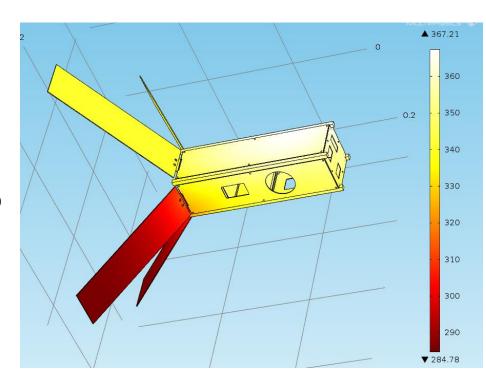
- Estimate panel temperature for various configurations of solar cells
- Dependent on configuration of one side



Formal Analysis

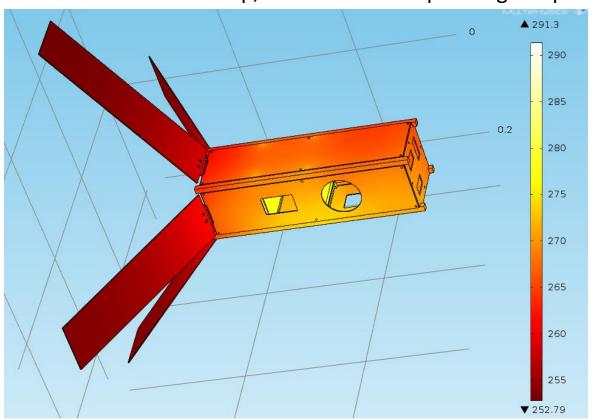
Matlab

- Simple model
 - 4kg aluminium block
- Complex model
 - Functions allow use for multiple spacecraft
 - Power or temperature calculations
 - Conductive pathways between components
 - Characterized using RAX-2 data



ANSYS

Verify complex model in Matlab



- COMSOL used for Thermal node analysis
 - Imported simplified CAD model from Solidworks
- Worst Case Maximum Temperature
 - Dawn/Dusk orbit (full sun)
 - Areas of concern:
 - WINCS 90°C maximum temp
 - 45°C maximum operating temp
 - Batteries 54°C maximum temp
 - 35°C maximum operating temp

- Worst Case Minimum Temperature
 - Noon/Midnight orbit (max eclipse)
 - Areas of concern:
 - WINCS 4°C minimum temp, -15°C minimum operating temp
 - Batteries 3°C minimum temp, 5 °C minimum operating temp

Summary

- FEA conducted, but did not pass static loading overall error in WINCS faceplate has been addressed
- Deployable panel configuration analysis shows single-sided temperature dependence and necessity of coating
- MATLAB model characterizes thermal pathways, verified
- Node analysis for maximum and minimum conditions confirms a strong need to dissipate heat

Future Analysis

Deployable Panel Trade Study

- Temperature gradients based on thermal properties
 Gradient Mitigation
- Specific pathways for heat distribution

Contact Information

- Science PI: Aaron Ridley
 - ridley@umich.edu
- Engineering PI: Jamie Cutler
 - jwcutler@umich.edu
- Project Manager: Scott Perry
 - nebmazel@umich.edu
- Engineering Advisor: Damen Provost
 - provostd@umich.edu
- **Chief Engineer:** Tom Heine
 - heinet@umich.edu

- ADC Lead: Charles Galey
 - cgaley@umich.edu
- **CDH Lead:** Brandon Heidt
 - bmheidt@umich.edu
- COM Lead: Vikram Ivatury
 - vivatury@umich.edu
- EPS Lead: David Cardelli
 - cardelli@umich.edu
- STR Lead: Duncan Miller
 - duncanlm@umich.edu

Thank you for your time and feedback!