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Abstract

This paper presents optimal trajectory solutions for guiding the Apollo Lunar Excursion
Module (LEM) to and from the Moon’s surface. GPOPS− II was used to solve the nonlinear
control problem, providing full state and control histories for optimal ascent, descent and abort
scenarios. Although historically Apollo did not follow an optimal trajectory due to terrain and
navigation constraints, the methods presented here can be used by future mission planners to
quantify mission risk and potentially adapt the concept of operations for optimal astronaut
safety.



Contents

1 Apollo Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Project Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Gauss Pseudospectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 The Descent Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.1 Apollo Flight Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Minimum Time Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.4 5km Parking Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 Minimum Mass Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 The Ascent Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.1 Apollo Flight Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 The Abort Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.1 Apollo Flight Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 ‘Pull-Up’ Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.4 ‘Pull-Up’ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5 ‘Deflection’ Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.6 ‘Deflection’ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.7 ‘Two-Staged’ Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.8 ‘Two-Staged’ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.9 ’Hop’ Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.10 ‘Hop’ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



Moon Landing
Duncan Miller, 16.323 Student

duncanlm@mit.edu

1 Apollo Overview

The highlight of the Apollo space program was mankind’s repeated landings on the surface of the
Moon. To this end, the Lunar Excursion Module (LEM) was designed to carry astronauts to and
from the lunar surface. The LEM provided man’s first aerial approach into such an alien envi-
ronment. Although trajectories were simulated many times preflight, the high terrain variability,
guidance error, sensor noise, and visibility hazards added extremely high risk to the mission profile.
Lunar injection and subsequent re-rendezvous phases were the most complicated control sequences
of the Apollo mission and are the focus of this project.

The Apollo mission trajectory was not optimal in the traditional sense of time or fuel. NASA
engineers instead optimized the probability of mission success and astronaut safety, given the con-
straints on computational power and guidance instruments at the time. Moreover, the variations
in lunar terrain were only known a priori within about ± 20,000 ft - even the lunar reference radius
from which the terrain is measured had large uncertainties. Also, worst case instrument readings
necessitated larger margins on state estimates. To account for these error dispersions, the Apollo
mission profiles were largely conservative and even relied on manned piloting during final descent.
This added an additional constraint on the flight path angle so that the crew could use the window
to evaluate the landing site and correct as needed. As a result, the final trajectories for descent,
ascent and abort deviated from the fuel and time optimal solutions presented here.

2 Project Scope

For this project, I have developed a three degree of freedom simulation of the Apollo Lunar Lander.
Specifically, we explore three optimal control problems:

1. The descent from lunar orbit to a soft landing;
2. The ascent to lunar orbit to rendezvous with the Lunar Orbiter; and
3. The ascent and rendezvous from an aborted landing.

This project is of intellectual merit for three reasons. First, it is relevant to the class material cov-
ered this semester. I first researched the 6DOF equations of motion for an orbiting satellite. Then
I formulated the objective functions, boundary conditions and physical constraints. I examined the
vehicle response and was able to draw conclusions for general OCPs. Second, we can use the results
from this analysis to learn from and critically analyze the Apollo trajectory design, especially for
abort cases. Finally, this paper collects existing literature on the subject of manned lunar missions
and creatively investigates an original approach to the abort planning policy. The methods pre-
sented herein may be scaled and adapted to future manned space missions to the Moon and Mars,
which I hope to be a part of.

This project delivers (1) a detailed discussion on the problem formulation including a simplified
vehicle model that can relate control inputs to vehicle accelerations, (2) results and conclusions
from a variety of descent, ascent and abort scenarios, (3) a body of Matlab code, GPOPS config
files, plots and a simulation generated for this assignment.

2014May9 1
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3 Dynamics

The equations of motion of a satellite orbiting a massive body like the moon are well known. For
the scope of this project, the spacecraft has been reduced to a point mass and its gravitational effect
on the moon-satellite system has been omitted. The Moon itself has been modeled as a perfectly
spherical body and additional gravitational terms from the Earth and the Sun have been neglected.
Under these assumptions, the orbit equations can be realized in following spherical coordinates [6].



ṙ = vr

θ̇ = vt
r cosφ

φ̇ = vn
r

v̇r = − µ
r2

+
v2t+v

2
n

r
+ T

m
sinα cos β

v̇t = vt
r

(vn tanφ− vr) + T
m

cosα cos β

v̇n = −v2t
r

tanφ− vrvn
r

+ T
m

sin β

ṁ = − T
Ispg0

(1)

Here we have defined seven state variables. r represents the radial distance from the center of the
moon to the Lunar Excursion Module. θ is the true anomaly of the spacecraft, the angular position
of its orbit. Since the moon has been modeled as a perfect sphere, and our problem scope only
includes the Moon’s sphere of influence since lunar insertion, it is natural to define the travel angle
of the spacecraft from θ(t0) = 0 to θ(t). φ has been defined as the declination of the orbit plane
from Moon-Centered Inertial coordinates. vr denotes the in-plane radial velocity and vt denotes the
in-plane tangential velocity of the spacraft. vn represents the out-of plane tangential velocity of the
LEM.

Finally, we have introduced a seventh state variable to represent the mass of the spacecraft. This is
important to include because as the spacecraft uses fuel, the thrust-to-weight of the vehicle increases
dramatically. Indeed, for a vehicle made up of 50% fuel, the thrust-to-weight would double by the
end of its mission life. Thus we have introduced a time varying state variable to account for this.

There are three control variables specified in this problem formulation: thrust magnitude (T ),
in-plane thrust angle (α) and out-of-plane thrust angle (β). Spacecraft attitude has not been in-
cluded in our controllable state set. The Apollo Lunar Module used a throttle-able, trim gimballed
descent propulsion system (DPS) and ascent propulsion system (APS). The DPS and APS engines
were directed in the minus-Z body frames and attitude was control separately via the hypergolic
thrusters of the Reaction Control System (RCS). In this problem formulation, the assumption is
that the RCS does its job of orienting the vehicle to direct the thrust vector according to α and β.
It would be interesting to see the two problems coupled together (since the RCS thrusters do affect
the trajectory to some degree) but this is left for future work.

We are able to reduce our state space, equations of emotion, and control variables significantly
by guessing an optimal solution to the problem. Since gravitational forces only act in the plane of
the orbit, and pseudo acceleration terms from a rotation reference frame do not induce out of plane
dyanmics, we can assume a planar solution. This simplifies our model as follows.
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ṙ = vr

θ̇ = vt

r���:
1

cosφ

�
��
0

φ̇ =
�
�7
0

vn
r

v̇r = − µ
r2

+
v2t�
��* 0

+v2n
r

+ T
m

sinα��
��* 1

cos β

v̇t = vt
r

(���
��: 0

vn tanφ− vr) + T
m

cosα��
��* 1

cos β

���
0

v̇n =
��

���
���

��
���

�: 0

−v2t
r

tanφ− vrvn
r

+ T
m

sin β
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We have cleaned up the terms and used the following dynamics in our nonlinear solver.

ṙ = vr

θ̇ =
vt
r

v̇r = − µ
r2

+
v2t
r

+
T

m
sinα

v̇t = −vtvr
r

+
T

m
cosα

ṁ = − T

Ispg0

(3)

(4)

(5)

(6)

(7)

Next I have defined the constants used for this solution. Many of the parameters related to the
design properties of the LEM are referenced from [5]. The ascent stage mass was taken from the
National Space Science Data Center [1].

Moon’s Gravitational Constant:

Moon’s Gravitational Acceleration:

Moon Radius:

Earth’s Gravitational Acceleration:

CSM Parking Orbit Radius

Orbital Parking Velocity:

Specific Impulse (ascent & descent):

Total Mass of Descent Stage:

Propellant Mass of Descent Stage:

Total Mass of Ascent Stage:

Propellant Mass of Ascent Stage:

µ = 4902.9km3/s2

g = 1.622× 10−3 km/s2

RM = 1738 km

g0 = 9.81× 10−3 m/s2

hp = 111 km

vpt =

√
µ

RM + hp
= 1.628 km/s

Isp = 311 s

mtds = 10 465 kg

mpds = 8355 kg

mtas = 4774 kg

mpas = 2615 kg

(8)
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4 Gauss Pseudospectral Method

The general procedure for solving Optimal Control Problems (OCPs) has been summarized in Figure
1. First, the optimal control problem is formulated and subsequently discretized for a nonlinear
numerical solver to optimize. Once a solution is found (or not found), the mesh may be adapted
and the problem may be retranscribed as needed to converge to an extremal.

Figure 1: Traditional Optimal Control Iteration Loop

The optimal control problems presented in this paper can be written in the followin general form,
with the objective function, dynamic constraints and boundary conditions given as J , dx

dt
and φ

respectively.

minimize
u

J = Φ(x(tf ), tf ) +

∫ tf

t0

g(x(τ),u(t), t)dt

subject to
dx

dt
= f(x(t),u(t), t)

φ(x(t0), t0,x(tf ), tf ) = 0

(9)

For this paper, I have taken the OCPs and solved them using a recently developed transcription
method called the Gauss pseudospectral method (GPOPS− II). Although detailing the method-
ology of GPOPS− II is beyond the scope of this paper, we can make some observations here that
will assist in our interpretation of the forthcoming solutions presented. The reader is referred to
[2] for a more in depth explanation of pseudospectral methods.

GPOPS− II has been designed to solve nonlinear, continuous, and multi-phase problems. GPOPS− II
uses Gaussian quadrature method to solve the OCP by obtaining a sparse, finite nonlinear program-
ming problem (NLP) before translating it for existing solvers (like SNOPT, IPOPT) to evaluate.
The important realization is that GPOPS− II iterates and approximates the solution using adap-
tive mesh refinement until the desired accuracy is achieved. The adapted Figure 2 summarizes the
key parameters and shows how collocation points may be much denser in some regions than other.
We observe this phenomenon in later abort cases, as shown in Figure 13.

2014May9 4
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Figure 2: Adapted Figure Detailing the Meshing Algorithm for GPOPS-II

Thus, GPOPS− II has been selected as the solver for three primary reasons. It employs first and
second sparse finite-differencing to find derivatives, uses an hp-adaptive mesh refinement method
(ideal for near discontinuities), and is rather simple for problem formulation (only requiring Matlab).

5 The Descent Problem

5.1 Apollo Flight Plan

First we consider the problem of landing the Apollo astronauts on the surface of the Moon from a
lunar parking orbit. In theory, the optimal control maneuver would use two impulsive thrusts to
complete Hohman transfer orbit from the dark side of the moon to the landing zone. However, the
descent stage is limited to a maximum thrust to weight ratio of 1.8 (at landing), which cannot be
approximated as impulsive.

The final Apollo trajectory settled on a two phase design: (1) separation from the Command
and Service Module (CSM) followed by an obit transfer from the 50 nautical mile parking orbit
(111km), (2) braking phase beginning at the 50,000 ft pericynthion, (3) final landing phase. This
was implemented, as previously discussed, due to state estimation uncertainties, high lunar terrain,
and the high flight path angle requirement (for pilot viewing through the window).

2014May9 5
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Figure 3: Actual Descent Trajectory Used for Apollo Missions [3]

5.2 Minimum Time Problem Formulation

First, we consider the minimum time descent problem for the LEM from a 111 km parking orbit.
Using the final time as the objective function is reasonable, considering the astronauts have a fixed
amount of oxygen available for the mission. Additionaly, the astronauts would like to spend as much
time as possible on the lunar surface conducting experiments. Thus, within the fuel constraints (and
some margin to account for uncertainties), a minimum time problem is formulated. We will see
that this choice actually keeps the propellant mass high, close to the optimal fuel efficient path
presented later.

minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM

(mtds +mtas −mpds) ≤ m ≤ mtds +mtas

T : {0, [0.1Tmax, 0.6Tmax], Tmax}

(10)

During descent, the LEM must carry both the descent and ascent stages. Morover, the thrust is
allowed to be throttleable, from 10% to 60% or full throttle at Tmax = 45.03kN . Of course, the
Moon’s surface is modeled as flat and impenetrable.

We define the boundary conditions as follows. Initially, the LEM begins in a circular orbit at
11 km with full propellant.

r0 = rM + hp θ0 = 0 vr0 = 0 vt0 =

√
µ

r0
m0 = mtds +mtas (11)
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The spacecraft must touch down on the surface with zero velocity (a ‘soft landing’).

rf = rM vrf = 0 vtf = 0 (12)

The parking orbit has been modeled as circular, which is a resonable assumption. The target orbits
for rendezvous are naturally circular. This ensures that any rendezvousing satellite can match both
position and velocity during approach phasing. We also note that θf is unconstrained. Although
the actual Apollo mission had a specific landing region in mind, it would be trivial to propagate
backwards from tf and determing when descent should begin in order to hit the landing zone
(assuming perfect state knowledge).

5.3 Results

The problem was input into GPOPS− II and solved numerically. Some parameters were tuned,
such as the mesh, initial guess, and control bounds so that the solver converged to an optimal
trajectory (Figure 4, Figure 5).

Figure 4: Altitude Trajectory for Optimal Lunar Descent from 111km
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Figure 5: Planar Trajectory in MCI Coordinates for Optimal Lunar Descent from 111 km

The green path is the propagated CSM trajectory. The full state histories for the LEM follow the
paths summarized in Figure 6.
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Figure 6: Summarized State and Control Histories for the Lunar Descent

As expected, all states meet the boundary conditions specified. Although the thrust was allowed to
be throttleable, the maximum thrust was used throughout the trajectory (indicated by the linear
negative slope for mass). However, the control angle varried continuously, first thrusting forward
to slow orbit velocity and then thrusting down for a soft landing.

While implementing the solver, I also adjusted various parameters to observe their effects on orbit
trajectories. For example, if the parking orbit was instead 5km, we obtain the results shown in
Figure 7.

2014May9 9
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5.4 5km Parking Orbit

Figure 7: Altitude Trajectory for Optimal Lunar Descent from 5km

It is interesting to note that if we started from a 5km altitude, the optimal trajectory in fact first
raises the orbit before falling to the surface. This is attributed to the limited control authority of
the descent thruster. At a lower altitude, the orbit velocity is very high. Thus, by slowing down, the
altitude increases temporarily as the spacecraft transitions to an elliptic orbit with higher apoapsis.
If given a higher thrust, I was able to show that the minimum time trajectory followed a path
similar to Figure 4.

5.5 Minimum Mass Trajectory

We also consider the minimum fuel descent trajectory. The objective funciton can be adjusted as
follows.

minimize
u

J = mf (13)

As expected, Figure 8 shows the time to land is significantly increased by a factor greater than
3. Since the descent stage is throttleable, the optimal control history hovers around 20% for the
majority of the journey. This is much closer the actual flight profile implemented in Apollo. Indeed
the descent stage was first throttled to 10% to begin descent for nominal engine checkout and
minimal fuel. More details can be found in the Appendix, Figure 24.

2014May9 10
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Figure 8: Altitude Trajectory for Minimum Mass Lunar Descent

6 The Ascent Problem

6.1 Apollo Flight Plan

The Apollo flight plan followed two phases: vertical rise and orbit insertion. The vertical rise was
necessary to clear the nearby lunar terrain prior to ‘pitch-over’ and subsequent orbit insertion.
First, the astronauts launched from the surface into a 17 x 83 km orbit. The orbit was then circu-
larized into a 83 km orbit, and subsequently inserted themselves into an orbit with a 28 km height
differential [10]. This was known as the coelliptic method as it gave the ascent stage a large buffer
to rendezvous with the CSM (about 3.5 hours or two orbits).

Compared to the descent problem, optimal ascent was considered lower risk and did not require
use of the landing radar. Also since the ascent engine was non-throttleable and non-gimbaled, the
attitude was controlled soley by the RCS.

6.2 Problem Formulation

The ascent problem can be modeled very similarly to the descent problem with updated boundary
conditions. Again, I have taken the objective function to be minimum time. Presumably, there is
a fixed amount of oxygen and supplies and the NASA engineers would like to maximize astronaut
time on the surface (with propellant margin).

2014May9 11
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minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM

(mtas −mpas) ≤ m ≤ mtas

T : {0, Tmax}

(14)

Again, the engine is non throttleable so the thrust is limited to either off or full throttle (Tmax =
16.0kN). The boundary conditions are given as follows. The initial conditions are:

r0 = rM θ0 = 0 vr0 = 0 vt0 = 0 m0 = mtas (15)

We note that the mass now only includes the ascent stage mass. The descent stage is abandoned
on the surface. The final conditions are:

rf = rM + hp θf =
vp
r
∗∆t vrf = 0 vtf =

√
µ

rf
(16)

The new final condition on θ comes from the need to rendezvous exactly with the Command and
Service Module. For a nominal ascent, the astronauts are instructed to hold on the surface of the
moon until the CSM comes into position, exactly ∆t seconds prior to the scheduled rendezvous.

6.3 Results

In this section we present the solutions found for optimal ascent. I note that the definition of the
control angle was reversed 180 degrees. This way, the thrust angle α stayed continuous throughout
the entire trajectory, and did not have a discontinuous switch when crossing over the ±180 degree
boundary constraint.
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Figure 9: Altitude Trajectory for Optimal Lunar Ascent

Figure 10: Moon Centered Inertial Trajectory for Optimal Ascent
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Figure 11 details the full state history for this maneuver. Again, the thrust is held constant at
maximum throttle for the duration of the ascent.

Figure 11: Summarized State and Control Histories for the Lunar Ascent

As in the descent problem, the optimal solution follows the expected smooth path. The thrust is
constand and at full throttle for the duration of the trip (linear ṁ). We observe that all boundary
conditions previously specified are satisfied. The flight time is slightly less than for optimal descent.
We can attribute this to the higher thrust to weight ratio of the ascent engine. We notice that
the thrust angle adjusts during the flight; it begins mostly downward to hoist the stage off of the
surface. As the stage approaches orbital velocity, the LEM tips over and directs the thrust in the
tangential direction.

2014May9 14
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7 The Abort Problem

7.1 Apollo Flight Plan

It was an Apollo mission requirement that the crew retain the capability to abort the lunar landing
at nearly every phase of the descent trajectory. Only during the final powered braking, once com-
mitted to touchdown, was a direct abort not an option [10]. At any point in time, the commanding
astronaut had two buttons at the ready: one that read ‘Abort’ and another that read ‘Abort Stage’.
The ‘Abort’ button was only able to be used early in the powered descent and actually used the
descent engine to re-rendezvous with the CSM. The ‘Abort Stage’ was used in the case of a descent
stage failure or if already deep into the descent maneuver. This enabled explosive charges to jettison
the descent stage and re-rendezvous using only the ascent stage.

Fortunately, an abort was never commanded during the descent phase of any Apollo mission. How-
ever, there were contingencies in place just in case. As detailed in [8], rule 28-18 indicates that
wherever possible, the abort will be initiated without stage separation. This ensured maximum
propellant margin for re-rendezvous. Moreover, the abort guidance computer was computationally
limited, preventing real-time planning of all possible abort options. In abort cases, it would have
likely been necessary for computationally expensive calculations to be performed in Houston and
relayed to the crew.

7.2 Solution Overview

Unlike the descent and ascent problems, an abort from powered descent may occur at any time
- thus none of the initial state variables are known a priori. Unfortunately, due to physical con-
straints of the vehicle and mission, no single problem formulation can span the entire solution space.

As summarized in Figure 12, I have designed four possible abort scenarios that enable the as-
tronauts to abort from powered descent at any point and re-rendezvous with the CSM.

• The ‘pull-up’ abort is feasible early in the descent and has the LEM immediately increase
altitude and catch up with the CSM. The descent stage may or may not be jettisoned imme-
diately.
• The ‘two-staged’ abort lengthens the window to immediately catch up with the CSM by

first depleting the propellant in the descent stage before lighting the ascent stage and re-
rendezvousing.
• The ‘deflection’ abort falls down to the Moon, maintaining a low orbit period and high speed

before ascending to the parking orbit exactly with the CSM.
• The ‘hop’ abort occurs directly after touchdown and ensures the astronauts get off the surface

as quickly as possible, regardless of CSM positioning.
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Figure 12: Proposed Solution Space for All Abort Cases

7.3 ‘Pull-Up’ Problem Formulation

If the abort is initiated early in the descent trajectory, the altitude loss during the abort maneuver
will be rather small. Although the LEM will traditionally begin descent slightly ahead of the CSM,
the loss of tangential velocity will cause the CSM to pull ahead in the orbit. An early abort will
allow the ascent stage to pull-up from the descent and catch up with the CSM.

The problem has been divided into two phases. First is the optimal descent phase as derived
in a previous section. A new phase has been initiated at any arbitrary time after descent (down to
about 80 km). The new additional phase is formulated as follows.

minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM

(mtas −mpas) ≤ m ≤ mtas

T : {Tmax}

(17)

The problem has been formulated assuming the astronaut has selected ‘Stage Abort’, immediately
jettisoning the descent stage. The traditional ‘Abort’ using just the descent stage is formulated

2014May9 16
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exactly the same with the descent stage mass and thrust values instead.

Again, the engine is non throttleable (fixed at Tmax = 16.0kN) and (in this case) need not be
restartable. The boundary conditions for the abort phases are given as follows. The initial con-
ditions for the pull-up phase are that the interior points between optimal descent and abort are
continuous:

t1f = t20 (18)

r(t
(1)
f ) = r(t

(2)
0 ) (19)

θ(t
(1)
f ) = θ(t

(2)
0 ) (20)

vr(t
(1)
f ) = vr(t

(2)
0 ) (21)

vt(t
(1)
f ) = vt(t

(2)
0 ) (22)

m0 = mtas (23)

We note that the mass now only includes the ascent stage mass because in this pull-up maneuver
the descent stage has been jettisoned at the start of this phase (though it need not be in general).
The final conditions are:

rf = rM + hp θf =
vp
r
∗∆t vrf = 0 vtf =

√
µ

rf
(24)

The final condition on θ ensures that the ascent stage catches up and rendevous exactly with
the CSM. It should be noted that in the actual Apollo mission, the LEM began its descent slightly
ahead of the CSM. However, the phasing difference between the two is relatively minor and really
only reduces the ∆t allowable for a successful pull-up by a small margin.

7.4 ‘Pull-Up’ Results

The pull-up solution presented here has an abort initated at 150 seconds into the descent at an
altitude of 88 km. This was approximately what I am calling the ‘Point of No Return’ to perform
a pull-up abort with a jettisoned descent stage. Waiting longer than 150 seconds into the optimal
descent left the CSM too far ahead for the ascent stage to rendezvous with directly. For a pull-up
abort without stage separation, I would expect this Point of No Return to be even earlier in the
descent considering the descent stage will have already consumed fuel during the first phase.

2014May9 17



Moon Landing
Duncan Miller, 16.323 Student

duncanlm@mit.edu

Figure 13: Altitude Trajectory for Optimal Lunar Abort

Here we present the trajectory plots for this sample pull-up abort. Figure 15 shows the path in
the Moon Centered Inertial frame. The green represents the CSM maintaining a 111 km parking
orbit; the blue shows the ascent stage path; the red shows the ballistic trajectory of the jettisoned
descent stage.

Figure 14: Planar Trajectory in MCI Coordinates for Optimal Pull-Up Abort
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Figure 15: Summarized State and Control Histories for the Pull-Up Abort

We observe that the ascent stage gains altitude while also catching up in the true anomaly. There
is a near discontinuity in the control at about 270 seconds. At this point, the LEM switches from
maximizing its orbital energy to circularizing its orbit and coasting in to rendezvous with the CSM.

7.5 ‘Deflection’ Problem Formulation

If the abort is initiated some time greater than about 150 seconds into the optimal descent, the
CSM will be too far ahead in its orbit for a standard pull-up and phasing maneuver. Instead, I
found that the optimal trajectory actually has the LEM fall down toward the moon, gaining or-
bital velocity at no control cost. The LEM can coast at this high speed orbit until the appropriate
phase relationship to the CSM has been restored. I have so named this strategy the Deflection abort
since, in MCI coordinates, the trajectory effectively deflects around the Moon before rendezvousing.

The minimization problem for the abort phase is stated as follows. Note the descent phase for-
mulation was presented previously.
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minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM + 11km

(mtas −mpas) ≤ m ≤ mtas

T : {0, Tmax}

(25)

Again, the problem has been formulated assuming the astronaut has selected ‘Stage Abort’, im-
mediately jettisoning the descent stage. There is a new element/assumption made that the ascent
engine, while non throttleable (at Tmax = 16.0kN), is restartable. I.e. the ascent stage can coast for
some time - this was done repeatedly on Apollo. Moreover, I have included an additional constraint
on r that the altitude cannot dip below 11 km. The motivation for this is that there would be a
risk of collision with the terrain below 11 km.

The boundary conditions for the abort phases are given as follows. The abort has been initi-
ated at t = 280s. The initial conditions for this phase are that the interior points between optimal
descent and abort are continuous:

t1f = t20 (26)

r(t
(1)
f ) = r(t

(2)
0 ) (27)

θ(t
(1)
f ) = θ(t

(2)
0 ) (28)

vr(t
(1)
f ) = vr(t

(2)
0 ) (29)

vt(t
(1)
f ) = vt(t

(2)
0 ) (30)

m0 = mtas (31)

rf = rM + hp θf =
vp
r
∗∆t vrf = 0 vtf =

√
µ

rf
(32)

The final condition on θ ensures that the ascent stage catches up and rendevous exactly with the
CSM.

7.6 ‘Deflection’ Results

The Stage Abort has been initiated after the ‘Point of No Return’ so a Pull-Up abort cannot be
the solution. Instead we observe the predicted behavior shown in Figure 16.
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Figure 16: Altitutde Trajectory forthe Deflection Lunar Abort

We observe an engine shutoff coasting period followed by the altitude raising burn for rendezvous.
We note that this deflection maneuver burns less fuel than a late pull-up abort or the optimal ascent
profile. Although the LEM travels a wider range of altitudes, the orbital velocity is maintained high.
Thus the control actually acts to decrease the tangential velocity (thereby increasing the orbital
altitude).
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Figure 17: Summarized State and Control Histories for the Deflection Lunar Abort

7.7 ‘Two-Staged’ Problem Formulation

In this subproblem, we consider the case that the astronaut has selected the ‘Abort’ button but
after the so-called ‘Point of No Return’. In this case, the descent stage is completely depleted of
fuel before jettisoning the stage and completing the rendezvous with just the ascent stage. This is
a more fuel efficient strategy than jettisoning immediately. According to [8], this was the preferred
abort strategy if a direct ‘pull-up’ could not be achieved. In this formulation, there are three addi-
tional phases after an abort is initiated during descent.

The first phase is the optimal descent portion. The second phase takes the LEM into a low al-
titude orbit (no less than 11 km) and coasts. The third phase depletes the descent stage fuel by
maximizing orbital altitude. The final phases completes the rendezvous with the CSM. Second
phase formulation:
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minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM + 11km

(mtas +mtds −mpds) ≤ m ≤ mtds +mtas

T : {0, [0.1Tmax, 0.6Tmax], Tmax}

(33)

The boundary conditions for this phase is given as follows. The abort has been initiated at t = 180s.
The initial conditions for this phase are that the interior points between optimal descent and abort
are continuous:

t1f = t20 (34)

r(t
(1)
f ) = r(t

(2)
0 ) (35)

θ(t
(1)
f ) = θ(t

(2)
0 ) (36)

vr(t
(1)
f ) = vr(t

(2)
0 ) (37)

vt(t
(1)
f ) = vt(t

(2)
0 ) (38)

m(t
(1)
f ) = m(t

(2)
0 ) (39)

rf = rM + 11 vrf = 0 vtf =

√
µ

rf
(40)

We note that this is a stable orbit and the LEM can coast until the appropriate positioning relative
to the CSM has been made. The third phase maximizes the orbital altitude. We include a require-
ment that the descent stage be jettisoned while in a circular orbit. In this way, any anomalies for
ascent stage restart keep the astronauts in a homeostatic orbit (not a ballistic trajectory toward
the surface).

minimize
u

J = −rf

subject to ẋ = f(x, u)

r > RM + 11km

(mtas +mtds −mpds) ≤ m ≤ mtds +mtas

T : {0, [0.1Tmax, 0.6Tmax], Tmax}

(41)
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The boundary conditions for this phase is given as follows.

t
(2)
f = t

(3)
0 (42)

r(t
(2)
f ) = r(t

(3)
0 ) (43)

θ(t
(2)
f ) = θ(t

(3)
0 ) (44)

vr(t
(2)
f ) = vr(t

(3)
0 ) (45)

vt(t
(2)
f ) = vt(t

(3)
0 ) (46)

m(t
(2)
f ) = m(t

(3)
f ) (47)

vrf = 0 vtf =

√
µ

rf
(48)

The final phase ensures rendezvous with the CSM and has a familiar formulation.

minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM + 11km

(mtas +mtds −mpds) ≤ m ≤ mtds +mtas

T : {0, Tmax}

(49)

The boundary conditions for this phase is given as follows.

t
(3)
f = t

(4)
0 (50)

r(t
(3)
f ) = r(t

(4)
0 ) (51)

θ(t
(3)
f ) = θ(t

(4)
0 ) (52)

vr(t
(3)
f ) = vr(t

(4)
0 ) (53)

vt(t
(3)
f ) = vt(t

(4)
0 ) (54)

m(t
(4)
0 ) = mtas (55)

rf = rM + 111 vrf = 0 vtf =

√
µ

rf
(56)

7.8 ‘Two-Staged’ Results

It turns out that the two-staged abort behaves very similar to the Deflection abort, except that the
fuel margin on the ascent stage is significantly higher for this two-staged maneuver. However, both
strategies are capable of CSM rendezvous after the ‘Point of No Return’.
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Figure 18: Altitude Trajectory for the Two-Staged Lunar Abort

Figure 19: Summarized State and Control Histories for the Two-Staged Lunar Abort
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We observe that the trajectory is exactly as expected. The altitude reaches a minimum of 11 km
just above the terrain line and can coast as long as needed to maintain the proper phase relationship
with the CSM before ascending. Then it reaches as high of a plateau as possible with the descent
stage before completing the final rendezvous with just the ascent stage. The final mass margin is
significantly higher than the Deflection maneuver.

7.9 ’Hop’ Problem Formulation

The final abort considered is a hop from the lunar surface. Just as I have defined a ‘Point of No
Return’ for a pull-up, there is a dual point in descent (approximately 11 km) where the astronauts
must commit to touchdown. Any abort below 11km in altitude must land before rendezvousing.
This reduces the risk of terrain collisions, stage separation anomalies, and surface impact. This case
differs from the standard optimal ascent because the CSM can be anywhere in the orbit– i.e. there
is a large θ offset that must be accounted for.

Defining optimality conditions for this case is not straightforward. The idea is that if the Hop
abort is initiated immediately at touchdown, up until about 25 minutes after touchdown, the opti-
mal strategy would be to ascend to a minimum altitude orbit until the appropriate relative phasing
is achieved and ascent begins. If the Hop abort is initiated sometime after this critical time (ap-
proximately greater than 25 minutes), the optimal strategy would be to boost to a high altitude
orbit, reversing the CSM/LEM roles so that the CSM is the one catching up from behind.

As will be presented, I was unable to converge to an optimal solution without the ‘Deus Ex Machina’
condition, due to insufficient mass margins. The Deus Ex Machina condition is borrowed from clas-
sical literature, when the hand of God is required to conveniently solve the problem. The presented
solution was formulated as follows.

minimize
u

J = tf

subject to ẋ = f(x, u)

r > RM

(mtas −mpas) ≤ m ≤ mtas

T : {0, Tmax}

(57)

Again, the engine is non-throttleable so the thrust is limited to either off or full throttle (Tmax =
16.0kN). The boundary conditions are given as follows. The initial conditions are:

r0 = rM θ0 = 0 vr0 = 0 vt0 = 0 m0 = mtas (58)

rf = rM + hp ± 30km vrf = 0 vtf =

√
µ

rf
(59)

We have chosen to put the LEM in an orbit that has a 30km altitude differential to the parking
orbit. This is exactly what was done in the actual Apollo flight profile. In this way, CSM rendezvous
is guaranteed in less than 3 hours (about 2 orbits) [10]. The second phase, in theory, propagates
the orbit from the first stage until the CSM is in position before ascending/descending.
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t
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0 ) = m(t

(2)
0 ) (65)

rf = rM + hp θf =
vp
r
∗∆t vrf = 0 vtf =

√
µ

rf
(66)

7.10 ‘Hop’ Results

As described in both [10] [4], this strategy was to be implemented by the LEM for an equivalent 3
phase orbit insertion hop. My results showed that, given the fixed mass fraction of the ascent stage,
such a hop maneuver was infeasible without the Deus Ex Machina condition. Deus Ex Machina
invokes the CSM to perform phasing maneuvers to rendezvous with the ascent stage if the LEM is
fuel depleted. As shown in the Appendix plots Figure 25, the fuel required by the LEM to first
park in an orbit, and then re-rendezvous was simply too much.

Figure 20: Altitude Trajectory for the Hop and Catch-Up Lunar Abort
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Figure 21: Altitude Trajectory for the Hop and Wait Lunar Abort

We note that the key difference in analysis between the work presented here, and the actual Apollo
flight profile is that here we use circular parking orbits. As an extension to this work, the author
also considered and solved this problem using elliptical parking orbits (exactly those proposed by
the Apollo flight profile), but was unable to show a marked performance improvement to close the
problem. As a final note, we see that the fuel difference between an 80km parking orbit and a
150km parking orbit is very small. Although 80km is much lower in altitude, the orbital speed is
higher, so the delta-v required is not that much less than for a 150km orbit.

8 Summary and Conclusions

In this report, we have investigated the moon landing of the Apollo Lunar Lander. Specifically,
we have simulated the optimal trajectory and proposed control inputs for three optimal control
problems: descent, ascent and abort. Due to the complexity of the abort problem, and nature of
the physical two-stage system and three-body problem, no single problem formulation was sufficient
to emcompass the solution to the optimal abort. Instead I proposed a solution set that guarantees
optimal CSM rendezvous from any abort during the mission.

The actual Apollo flight profile was not optimal in time or mass. Instead, the Apollo mission
accounted for many of the simplifications I made for my analysis. Future work on this project
would address some systematic errors neglected here for simplicity.

• Risk Weighted Objective Function: The best objective function may not be final time or final
mass. Instead a risk weighted function of time and fuel and other variables (such as terrain,
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dispersions, astronaut state of health, window field of view) may be chosen instead. I would
expect optimality in this sense to converge on a strategy that is much more similar to the
actual Apollo flight profile.
• Sensor Noise: The optimal solution presented here assumed perfect state knowledge from the

guidance instruments and landing radar. In reality, these introduced large dispersions in the
landing zone and rendezvous coordinates. In the future, this could be modeled as gaussian
stochastic (or biased) variations in the state and environment.
• Actuator Modeling : The ascent and descent propulsion engines were assumed to be ideal

nozzles with constant thrust parameters and infnite frequency control bandwidth. Other
non-negligible dynamics include engine shutdown and jettison time constants.
• Environmental Disturbances : We have considered the Moon as the only celestial body within

the sphere of influence of this problem. However, in the same way that the Moon affects the
tides on the Earth, I expect a similar effect of the Earth on the Moon. Although the Moon
does not have an atmosphere, there still exists spaceweather disturbances such as solar winds
(and coronal mass ejections).
• Time Lag : We have also assumed infinite processing speed and instantaneous ground commu-

nications. Unfortunately, this is unrealistic. The actual Apollo trajectory needed to account
for crew communication periods, as well as loss of signal on the dark side of the moon (where
orbital maneuvers were usually not to be performed).
• Other Unmodeled Physics : This report also does not address the Reaction Control System

(which can affect trajectories), fluid slosh, or other electromechanical latencies.

GPOPS− II was used as the nonlinear solver and I was grateful for its versatility and inuitive Mat-
lab interface. When provided a sufficiently constrained problem with a reasonable initial guess and
no discontinuities, GPOPS− II was able to converge to an optimal solution very quickly (within
seconds). I noticed that if GPOPS− II struggled to meet the solution tolerance, I was able to
tune the problem formulation to achieve convergence. This was done by adjusting the maximum
number of iterations and collocation points, recasting the boundary conditions or state limits, and
iteratively using the previous solution for the current best guess. In the end, I was impressed by
the simplicity of GPOPS− II and intend to use it in future optimal control problems throughout
my career.

Since Apollo, particularly in the 21st century, several commercial and governmental entities have
exhibited high interest in autonomously piloted lunar missions. For example, the Google Lunar X
Prize is incentivizing privately-funded spaceflight teams to design a robot to safetly land on the
moon. Morover, a manned lunar base has been cited in NASA’s cross enterprise roadmap doc-
uments for upcoming interplanetary missions. The methodology presented in this paper may be
scaled to such manned or unmanned missions to the Moon, Mars and beyond.
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Appendices

A Visualization

A custom simulation was developed for this project to show the audience how the trajectory progress
through time. The custom GUI designed is shown in Figure 22

Figure 22: Custom Visualization for Real-Time Plotting
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B Additional Figures

Additional individual figures per state have been generated and populated in the published html
report located in the html subfolder.

Figure 23: State and Control Histories for Lunar Descent from 5km
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Figure 24: State and Control Histories Minimum Mass Lunar Descent
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Figure 25: Summarized State and Control Histories for the Hop and Catch Up Lunar Abort
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Figure 26: Summarized State and Control Histories for the Hop and Wait Lunar Abort
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