

Communication, Navigation and Control using FlightGear

Simulations

Aerospace 450: Flight Software Systems

December 20
th

, 2012

Prepared by:

Duncan Miller

Hrishi Shelar

Joshua Thomas

Aerospace Engineering

University of Michigan

Abstract. With the growing demand for Unmanned Arial Vehicles in both military and

commercial applications comes a proportional increase in demand to test the flight algorithms in

a safe, repeatable environment. The purpose of this project is to facilitate the development of

these algorithms by providing a C++ software testbed to optimize proposed controllers. We have

successfully implemented a purely custom flight control system that communicates with a 3D

simulator (FlightGear) and can stabilize a standard fixed wing aircraft to steady level flight from

a reasonably disturbed position. Moreover, we have proven basic maneuvering through steady

level turns and climbs. Now, guidance, navigation and controls engineers are able to quickly and

easily test fixed wing flight path algorithms in a purely open source environment – this capability

has never been implemented at the University of Michigan to our knowledge.

2

Table of Contents

1 Introduction and Motivation for Research ... 3

2 Project Summary ... 3

3 Augmentation and Evaluation of UAV Playground .. 4

4 Transition to C++ for Stabilization .. 6

5 Multi-Threaded Architecture ... 7

6 Socket Communication Between Processes ... 8

6.1 Communication Protocol .. 8

7 Data Logging and Data Sharing .. 9

8 GPS Parsing and Recording .. 10

9 Terminal Input ... 10

10 Control Architecture .. 11

10.1 Stabilization .. 11

10.2 Steady Flight Maneuvers .. 14

11 System Performance .. 15

12 Education Value ... 15

13 Broader Impacts ... 16

Appendix A: Original Proposal Schematic ... 17

Appendix B: Procedure for Running our Final Project .. 18

3

1 Introduction and Motivation for Research
As autonomous, unmanned aerial vehicles (UAVs) begin to operate regularly in the National

Airspace System, the ability to safely test the coordination and control of flight vehicles will be

an important capability. Taking the pilot ‘out of the loop’ has both civilian and military

applications. For example, the U.S. government often needs to remotely track high profile

military targets—UAVs can be deployed to follow and observe transactions with little risk to

human life. Similarly, UAVs can be used to survey suspicious areas of land or actively guard

valuable assets during transfer. Freight transportation can also be optimized to avoid adverse

weather conditions in real time. These are the applications that our project will enable.

This team has worked to establish an autonomous vehicle testbed that will allow sophisticated

testing of control algorithms in a protected, repeatable environment. Evaluating the reactions of

air vehicles in a simulated environment reduces time and cost, while allowing the user to log,

replay and explore critical events with greater precision.

2 Project Summary
Our submitted flight controller is able to stabilize a modeled aircraft and perform basic

maneuvering given simulated data from FlightGear. Originally, we proposed a three layer

abstraction process to design a robust flight path controller. The process of control for any

aircraft starts with the physical movement of the control surfaces. The position of these control

surfaces is handled by a PID controller. Once tuned, maneuvers such as banking and ascending

can be established. These maneuvers are the building blocks to complex flight paths. Hence there

are three layers of control, namely:

1. Inner Loop Stabilization

2. Basic Maneuvering

3. Advanced Flight Path

Available open-source software aided with the first stage, but not to the extent originally

intended. FlightGear is the free, open source flight simulator chosen for this project. It has the

capabilities to model a wide variety of aircraft and ground vehicles quite realistically. FlightGear

bridges real world tests with more complex possible scenarios, emulating sensors and state data

such as GPS for our autopilot to parse and utilize. FlightGear provides a virtual environment

with real feedback in which we can ‘fly’ our UAV. Open-source controllers also exist. UAV

Playground is an open source Java application that we intended to adapt for optimal outer loop

control of UAVs. It is a front-end application that connects to FlightGear using a socket

connection. Due to a supposed memory leak with UAV Playground, however, we ultimately

built a flight controller exclusively in C++ that succeeded in emulating everything in the released

version of UAV Playground with additional maneuvering capabilities.

Our C++ controller is able to feed realtime data generated by FlightGear through virtual PID

control loops to stabilize the flight. The controller is able to interpret real-time user input and

perform the desired maneuvers. Our controller also generates time-stamped NMEA files that can

be parsed into Google Earth kml files and post processed after flight termination to verify

maneuvering accuracy.

4

3 Augmentation and Evaluation of UAV Playground
FlightGear is an open source, multi-platform flight simulator that has been in development since

the 1990s. Researchers in academia, industry experts, and even hobbyists have used it to model

aircraft, assess flight path performance, and on occasion have some fun. FlightGear is an

attractive system for many reasons. First, the simulation engine, SimGear, allows for the user to

customize a wide range of aircraft—gliders, rotary wing aircraft, personal planes, and airliners.

This also enables proposed aircraft designs to be crudely tested in a simulated environment prior

to production. Second, the flight dynamics model (FDM) is a high fidelity, non-linear, six

degree-of-freedom simulation application that combines three parallel, independent data

models—JSBSim, YASim and a derivative of UIUC. The FDM analyzes forces and disturbance

torques to calculate aircraft motion with outstanding accuracy. In fact, the atmosphere is realistic

enough to update with the current local weather and includes details such as eddy wind currents

which can be toggled.

Screen captures of the FlightGear virtual interface

As a state simulator, FlightGear inherently lacks a flight controller. For hobbyists (or even pilots

in mock cockpits), control input comes from the user through joystick voltage measurements.

However, real-time attitude control is best automated through a programmable software

controller that can respond with a qualitatively “high” frequency. Thus, FlightGear was designed

from the beginning for dominantly open socket communication. Custom control interfaces can

then be configured to receive state data and transmit control outputs. Many such FlightGear

interfaces have been constructed and released both commercially and as open-source projects.

One example is UAV Playground. However, few (if any) have been implemented at the

University of Michigan Ann Arbor campus.

UAV Playground is an open source Java applet that was Beta released in 2009. It allows for the

real time control of simulated aircraft through stabilizing PID control loops. The socket protocols

between FlightGear and UAV Playground are already defined, which is why we originally chose

to work directly from this platform. Using UAV Playground allowed us to “black-box” both the

controller-simulator interface and the inner loop stabilization controller. This would enable our

team to begin testing flight algorithms immediately.

We made great progress in developing flight maneuvers. Step two in our proposed project, after

inner loop stabilization and prior to flight path algorithms, was to program basic maneuvers in

flight—steady level turns, steady climb, steady descent. After reviewing the provided source

code, we were able to design and successfully implement two significant features to the UAV

Playground application: flight maneuvers (single circle, concentric circling, figure eight) and real

time error plotting.

5

Original UAV Playground GUI compared with our augmentations

Two principle java files were modified for our augmentations to UAV Playground: UAVsim.java

and MissionController.java. By expanding the applet window, we were able to add radio buttons

that toggled on three new flight states: Circle, Eight, and Concentric. Circling is coordinated by

recording the current flight heading and banking to a specified roll of 20 degrees until matching

the initial heading to within 5 degrees, at which point it levels. The figure eight is almost

equivalent, except that the instead of leveling, it banks a negative 20 degrees until re-matching

the initial heading. Finally, the concentric circle records the initial heading and the initial

position. After the first circle, the plane flies level until reaching the new radius (+200 meters)

away from the initial position. A PID loop over the roll angle ensures that plane follows each

new specified radius (sample error is plotted in the figure above). These are implemented in the

two submitted code files and our augmentations are marked by “//Aero 450 Edits Begin” and

“//Aero 450 Edits End”. For the sake of simplicity, the rest of the UAV Playground source code

was not submitted, but can be found online at: http://code.google.com/p/uavplayground/. Thus,

our algorithms for basic maneuvering were proven to work. The figure below shows a data

sample of our concentric circling flight path.

Real Time Error Plotting

3 Added Radio State Buttons Released Version

http://code.google.com/p/uavplayground/

6

Sample concentric flight path from UAV Playground plotted in Google Earth

Many valuable software skills were learned throughout this entire process. First, we studied the

accepted communication protocols from FlightGear and how to properly read and transmit state

data. Second, we learned how to read and write object-oriented Java code—our course lectures in

OOP helped with this considerably. In order to recompile the original UAV Playground source

code, our team had to learn the Eclipse IDE for Java developers. This included creating new

projects, properly referencing source/libraries, and debugging. Finally, we gained experience

with the Processing language and IDE. Processing can compile java applets and uses its own

language, which combines elements of Java with Arduino. We attempted to use Processing as an

alternative to Eclipse following the suspected memory leak issues discussed next.

4 Transition to C++ for Stabilization
Within the scope of UAV Playground, our team was unable to move past basic maneuvering to

flight path due to a presumed memory leak in UAV Playground. While working on the dual boot

A2SYS computer, UAV Playground was compiled and run on the Linux platform but

unexpectedly crashed after approximately 30 seconds of run time. We observed the same

behavior when we restarted our project in Windows. Significant effort was put forth to identify

and mitigate the potential memory leak. We observed the computer’s dynamic memory

overflowing before FlightGear crashed (requiring an OS restart). Although we did not have the

capacity to run FlightGear and UAV Playground on our laptops, we were able to successfully

compile and run on a Mac OS X Snow Leopard over Thanksgiving break—the UAV Playground

data presented here was collected on a Mac.

However, with only 30 seconds of run time available on campus (the Windows/Linux A2SYS

machine), we decided to instead transition to a C++ implementation of UAV Playground.

Creating a custom flight controller in C++ had many advantages. First, we were able to apply all

of the C++ methods presented in class (classes, sockets, threads). Also, it resulted in a much

more satisfying final product, since all of the code (with the exception of simple_sock) was

written from scratch—nothing in our project is “black-boxed.” We were able to use much of the

experience gained from our UAV Playground adventures (specifically XML protocol) in

designing our C++ architecture.

7

This resulted in a slight project de-scope approved by Professor Atkins. The communication and

stabilization functionality, originally black-boxed and considered complete, needed to be re-

created from scratch in C++. This cost us valuable development time and advanced flight path

algorithms were no longer considered. Our C++ controller was only required to stabilize and

maneuver (steady level, turning and climbing flight)—this was demonstrated through video

during the presentation.

5 Multi-Threaded Architecture
Our C++ FlightGear controller was designed with simplicity in mind. We run a single main()

function with six parallel threads, each with a different purpose and operating period as shown in

the figure below. Our FlightGearIN and FlightGearOUT threads transmit and receive state data

respectively at 10 Hz. The User Interface thread waits for new character commands from the

user. The Control thread reads the shared data using mutexes, runs our three PID loops (the three

rotational axes) and writes the commanded control outputs to the same shared data struct. Our

Record thread output state data (tab delimited) to a new text file for the duration of the test.

Finally, our GPS logging thread records the NMEA sentences as they are output by FlightGear.

The ‘parent’ data struct is shared between all threads

The shared data is a single struct passed as a void pointer to all simultaneous threads. This parent

struct included two double buffers (fg_in and fg_out) and the User Interface struct (UI), which

includes the mode (a character), an associated value for that mode, and a record toggle. Since it

is a pointer, all the threads access the same block of memory and threads read the most accurate

state numbers. Mutexes prevent errors in reading and writing to this memory block.

8

Implementation of threaded code and shared data

6 Socket Communication Between Processes
FlightGear allows for external control of program parameters through the implementation of

sockets. Sockets for input and output are specified during the program call via command line

arguments. The following represents the function call with arguments that we use to start

FlightGear.

fgfs --generic=socket,out,10,127.0.0.1,5558,udp,FlightGearReceiver-Protocol --
generic=socket,in,10,,6002,udp,test --nmea=socket,out,10,127.0.0.1,5557,udp --
airport=ksfo --aircraft=c172p --in-air --altitude=1500 --vc=90 --heading=300 --
timeofday=noon --prop:/controls/switches/starter=1 --
prop:/instrumentation/attitude-indicator/config/tumble-flag=0

Output sockets are used to obtain telemetry information such as heading, airspeed, position and

orientation. Input sockets allow other programs to control the aircraft. A third socket known as

the NMEA socket relays the position of the aircraft through NMEA sentences. It simulates the

output of a commercial GPS module.

6.1 Communication Protocol
Communication between FlightGear and the program use the UDP protocol instead of TCP. We

chose the UDP socket protocol for our project for the following reasons:

a) No need for TCP error checking as both programs run on the same machine

b) Simpler and Faster

Data is sent from FlightGear at the rate of 10 Hz. Users have the option to specify which

telemetry to receive through a configuration file placed in the FlightGear program directories.

We decided to use the UAVPlayground config file as we were familiar with its functionality and

knew it worked. Telemetry such as heading direction, air speed, etc is inputted from FlighGear to

augment control algorithms. Refer to Appendix B for detailed operation procedures.

9

The input data needs to be parsed so that the telemetry can be used by the control algorithms.

The parser for the input data is a state machine that is able to extract data by counting the number

of ‘>’ characters which is used by the XML to specify data structures. The value is stored to a

string buffer and then converted to a double using the atof function.

The output data is formatted according to the UAV Playground XML config file which specifies

it to be four float values separated by tabs and delimitated by a newline. FlightGear takes in

aileron, elevator, rudder and throttle as input commands. The following line produces the

command string which is sent to FlightGear.

sprintf(buff, "%1.3f\t%1.3f\t%1.3f\t%1.3f\r\n", data_r->fg_out[0],data_r-

>fg_out[1],data_r->fg_out[2],data_r->fg_out[3]);

Professor Atkins provided us with the socket connection code (simple_sock) which allowed us to

concentrate on the protocol issues right away. A slight modification was necessary to Professor

Atkin’s code to meet our requirements. The buffer for output data and input data was either too

large or too small. This was fixed by transitioning to a dynamic implementation so that data of

varying lengths can be transmitted and received effectively.

Another issue we encountered was the length of the output command string changing as a result

of negative values. As data is passed as a string and not binary negative values caused the length

to change because of the ‘-‘ sign.

7 Data Logging and Data Sharing
A significant amount of data processing and data sharing is involved in our project. Data coming

from FlightGear needs to be interpreted by the flight controller which, in turn, produces output

that needs to be fed back to FlightGear. All of this takes place while loggers record all the input

and output data to text files for post processing. The fact that each function runs on independent

loops and different speeds necessitates a centralized and synchronized data sharing process. Data

is shared via a common data structure that is passed to all threads. The structure contains arrays

to hold input and output data as well flight modes which gets set by the User Input thread. We

use mutexes to handle data access. This prevents read/write errors and data corruption that could

be caused by multiple threads to access the same data points. There are three Mutexs that are

used in the program

i) OutMutex – Protects Command data

ii) InMutex – Protects Telemetry data

iii) UIMutex – Protects Flight mode data

Every operation on the shared data structure, even checking of Boolean values, is protected by

the mutexs.

As noted, all of the data is logged. This also allows us to import the telemetry and data into

programs such as Matlab and Excel where we can analyze the performance of the PID controller

gains. The user has the option to start or stop the logging at any point during the flight.

10

8 GPS Parsing and Recording
FlightGear is able to mimic GPS module output through the NMEA socket. The NMEA sentence

format is a standard method of reporting GPS fix and GPS satellite information. The following

sample line is one of the most commonly used sentences which reports time, latitude, longitude

and altitude information.

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

The GPS parser is a state machine that checks for the GPGGA sequence then counts the commas

to discern the locations of the various fields. These fields are stored in buffer of chars. Then

using the function “atof()” the string value is converted to a double. The latitude and longitude

information undergoes further processing as the minutes and degrees need to be converted to a

decimal value. Our program uses the parsed data to generate a Google Earth kml file. The kml

file is a specific type of XML file that is used to store a set of points to be displayed in Google

Earth. The figure below, which shows our controller commanding a steady level turn, is

generated by this parsing process.

Steady level turn executed by the aircraft

9 Terminal Input
Once the control software starts (fghead), the user is given the option to enter an input mode.

There are four main input modes that are available to the user. The first, given by the ‘l’

command, is fly level. The program will stabilize the plane into a safe and level state. This is

done by commanding both the roll and pitch to zero in the PID controller. This mode also takes

no input value. The second mode, given by the ‘a’ command, takes in a desired altitude as the

input value. The plane then commands the pitch to either a positive 10˚ pitch to increase altitude

or a negative 10˚ pitch to decrease the altitude. When the current altitude is within 50 feet of the

desired altitude, the program issues the fly level command by setting the input mode to ‘l’. The

third mode, given by the ‘h’ command, takes in a desired heading as the input value. The plane

then determines whether it is shorter to turn to the right or to the left. The roll is then commanded

to positive 20˚ or negative 20˚ to roll right or left, respectively. When the current heading is

within 5˚ of the desired heading the program issues the fly level command similar to the change

altitude mode. The last user command is the quit mode which is given by the ‘q’ command. This

11

command takes no input and simply turns the current controller off so that the plane can be

manually controlled by the user.

10 Control Architecture
A PID controller is useful to maintain a set measurement without the need for an operator to

constantly make adjustments. The controller used for this project is a basic PID controller as

shown below. The program will take in a commanded value (yc) and subtract the current value

(y) from it to get the error (e(t)). In our case, the commanded value would be a 0˚ roll angle for

the fly level mode with a possible current value equal to 20˚ if the plane were just coming out of

a turning maneuver. The program will sample this current state at 10 Hz and feed it into the PID

control function. The controller then sends this error value (e(t)) through the proportional,

integral, and derivative gains. The tuning of these gains will be described later. The sum of these

gains is then used to control the elevator (and ailerons (. For our simple model, we are

not currently using the rudder (. The code, however, is written to be able to accept a rudder

value if we choose to set it.

Idealize PID feedback controller

In order to tune the PID controller for each degree of freedom, we followed a basic procedure by

starting with the proportional gain (P-gain) and then working to the derivative gain (D-gain), and

finally the integral gain (I-gain). Throughout the process, previous gains were also slightly

altered to create even better results. In the scope of this report, we demonstrate the procedure

undertaken for tuning our roll PID gains, because the magnitude of pitch oscillations was less

pronounced. The method was identical.

10.1 Stabilization
In order to see the full effect of the P-gain gain, we began by setting it to 0.5 then reduced it to

0.1 as shown below. The oscillations in these graphs are obviously undesirable. However, it is

good to see that as the P-gain is decreased the amplitude of the oscillations is also decreased. We

can continue to improve this controller by a reduction in the P-gain.

12

After a reduction of the P-gain to 0.07 the roll begins to stabilize after a few oscillations. Then,

when the P-gain is reduced again to a value of 0.015, we get something closer to what we are

looking for. The roll seems to be relatively stable; however, there is a noticeable steady-state

error. This can be fixed with the addition of an I-gain.

We started the I-gain at a high value of 0.2 to see what exactly it was doing to the roll. As shown

below the I-gain has gotten rid of the steady-state error we saw before, but it also added a lot of

oscillations. The addition of a D-gain can help to stabilize the roll, but first we want to create a

better roll signal by reducing the I-gain.

13

After a reduction in the I-gain to 0.017 we have a much better roll to work with when adding a

D-gain. If the I-gain gets too low as in the case with I-gain = 0.01. We see that the purpose of

adding the I-gain is not being fulfilled. The steady-state error is still visible. Therefore, we want

an I-gain somewhere around 0.017 and greater-than 0.01.

With the current P-gain set to about 0.015 and the current I-gain set to about 0.017, it is time to

see what the addition of the D-gain will do for us. Again, we started off with a high D-gain of 0.1

in order to see what exactly it could do. This high D-gain caused the roll to become unstable so

we continued to reduce the D-gain until this effect went away.

In conclusion, we chose a P-gain of 0.012, an I-gain of 0.015 and a D-gain of 0.01. These gains

give the signal shown below. As shown, the roll moves quite quickly to the commanded value of

0˚ with one slight overshoot before stabilizing.

14

10.2 Steady Flight Maneuvers
With steady level flight (stabilization about 0 degrees) properly tuned, we were able to move

forward with basic maneuvering. The one described here is a sample of a steady level turn,

although our controller is able to perform an equivalent steady climb and the results are almost

identical.

As an example, we initialized FlightGear to a heading of 300 degrees. After approximately 10

seconds, the user commanded a new heading of 345 degrees. The plane promptly banked right

until reaching the desired heading—at which point it set the flight mode to ‘l’ for steady level

flight. The following figure shows the recorded heading during flight and the subsequent one

displays the commanded aileron position from the beginning to end of the turn.

Thus, these Matlab plots showing command and control outputs demonstrate the capabilities of

our FlightGear communicator and controller. After de-scoping from advanced flight path and

optimizing trajectories, enabling the basic control through robust communication became our

primary objective, which we successfully delivered and demonstrated.

15

11 System Performance
The primary metrics in evaluating the performance of our testbed are repeatability and reliability.

By delivering a pure software based testbed, we have enabled researchers the ability to replay

and repeat specific control algorithms with greater precision or with incremental adjustments.

We proved the repeatability of our system by hard coding a steady level turn of 345 degrees after

10 seconds of run time. This test was run twice from the same initial position (airport and

altitude) and nearly the same time of day (offset by 1 minute, the duration of Trial 1). Note that

realtime weather was enabled.

Trial 1 and Trial 2 are identical in a steady level turn

The errors between trials at any given time were less than the realistic precision in aircraft state

(for heading—errors smaller than arc-seconds). Thus we concluded that our testbed was reliable

and repeatable. Also, since it is open source and easily editable, the controller can be tuned,

adjusted, or fully replaced quite easily and quickly.

Regarding measured processing time, our custom C++ architecture exhibited none of the

memory leaks observed with UAV Playground. Unlike UAV Playground, our custom controller

is multi-threaded so that transmit and receive periods can be appropriately coordinated. Worst

case operating period is less of a concern for this testbed than it would be for an operational

controller on an embedded system. However, it was important to stagger threads with usleep

commands in order to limit the access to shared data. For example, our control thread can

operate at a frequency greater than 100 Hz. Since our send and receive threads are only

configured to run at 10 Hz, our controller would redundantly enable the mutexes 10 more times

than required per cycle. Thus, we included enough sleep for the control thread to operate at

approximately 20 Hz. This still ensures that we do not miss a telemetry reading.

Of course, our send and receive socket functions could update at much higher frequencies,

especially on a shared machine. However, with UDP protocol, there is inherently greater risk in

losing telemetry. We chose to imitate a real-time embedded system as closely as possible—many

commercial GPS modules operate between 1 and 10 Hz which motivates our designed

processing time. In the scope of this project, we have designed a testbed more than a specific

controller. Although we did prove acceptable PID control, repeatability of the system was a

bigger driver than runtime of a specific control algorithm.

12 Education Value
FlightGear was the ideal platform to test all of the skills developed through AERO 450, Flight

Software Systems. As a team, we were able to devote all of our time to the software and let

FightGear simulate the hardware for us. This allowed us to avoid sinking time into

16

malfunctioning hardware. During the project, we were able to gain experience working with both

the Java and C++ languages.

We started with trying to debug Java then moved to C++ when the scope of the project was

changed. We have also become familiar with using more code editing software such as Eclipse.

Within the C++ language, we were able to look more closely at some of the advanced C++

programming taught in this course such as sockets (TCP/UDP) and multi-threaded code. Lastly,

we have successfully merged our software knowledge with real-time aerospace control theory,

implemented a PID controller to stabilize the aircraft, and logged and post-processed sensor and

GPS data.

13 Broader Impacts
The past decade has seen the widespread introduction of free and open source software to the

public domain. This movement refers to the freedom to copy and improve upon available source

code. Such a peer-to-peer development strategy has advanced the scope of functional

electronics, for the benefit of both individual and corporate growth. Over this semester, our team

has used and built upon these readily accessible tools to efficiently begin work on this testbed.

The results of our work are expected to be delivered to the open source community at the

conclusion of the semester. In the same way we are building on existing foundations, future

researchers will be able to contribute to our work. Moreover, through the increasing

globalization of shared data, this flexible testing platform can be distributed to academia and

research labs across the globe.

An established autonomous vehicle testbed provides researchers with an intermediary step

between software protocols and full scale reality. Such technology will accelerate the

contributions to the emergent field of Unmanned Arial Vehicles.

17

Appendix A: Original Proposal Schematic

18

Appendix B: Procedure for Running our Final Project

All procedures are assumed that the user is running in a linux environment.

Copy the XML protocol files (FlightGearSender-Protocol.xml and FlightGearReceiver-

Protocol.xml) into the FlightGear source folder (/usr/share/games/flightgear/)

Configure the fghead.sh batch file with the current directory (chmod +x fghead.sh). Run the

FlightGear application by executing fghead.sh

Open a second terminal, wait approximately 10 seconds, and run fghead

Wait for the UDP sockets to open (a message will appear in the terminal) and choose desired

flying mode. FlightGear will reflect the controller’s operation.

Sample desktop setup

