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Abstract. With the growing demand for Unmanned Arial Vehicles in both military and 

commercial applications comes a proportional increase in demand to test the flight algorithms in 

a safe, repeatable environment. The purpose of this project is to facilitate the development of 

these algorithms by providing a C++ software testbed to optimize proposed controllers. We have 

successfully implemented a purely custom flight control system that communicates with a 3D 

simulator (FlightGear) and can stabilize a standard fixed wing aircraft to steady level flight from 

a reasonably disturbed position. Moreover, we have proven basic maneuvering through steady 

level turns and climbs. Now, guidance, navigation and controls engineers are able to quickly and 

easily test fixed wing flight path algorithms in a purely open source environment – this capability 

has never been implemented at the University of Michigan to our knowledge.  

 

  



2 

 

Table of Contents 

1 Introduction and Motivation for Research ............................................................................... 3 

2 Project Summary ..................................................................................................................... 3 

3 Augmentation and Evaluation of UAV Playground ................................................................ 4 

4 Transition to C++ for Stabilization .......................................................................................... 6 

5 Multi-Threaded Architecture ................................................................................................... 7 

6 Socket Communication  Between Processes ........................................................................... 8 

6.1 Communication Protocol ...................................................................................................... 8 

7 Data Logging and Data Sharing .............................................................................................. 9 

8 GPS Parsing and Recording .................................................................................................. 10 

9 Terminal Input ....................................................................................................................... 10 

10 Control Architecture .......................................................................................................... 11 

10.1 Stabilization ...................................................................................................................... 11 

10.2 Steady Flight Maneuvers .................................................................................................. 14 

11 System Performance .......................................................................................................... 15 

12 Education Value ................................................................................................................. 15 

13 Broader Impacts ................................................................................................................. 16 

Appendix A: Original Proposal Schematic ................................................................................... 17 

Appendix B: Procedure for Running our Final Project ................................................................ 18 

 

  



3 

 

1 Introduction and Motivation for Research 
As autonomous, unmanned aerial vehicles (UAVs) begin to operate regularly in the National 

Airspace System, the ability to safely test the coordination and control of flight vehicles will be 

an important capability. Taking the pilot ‘out of the loop’ has both civilian and military 

applications. For example, the U.S. government often needs to remotely track high profile 

military targets—UAVs can be deployed to follow and observe transactions with little risk to 

human life. Similarly, UAVs can be used to survey suspicious areas of land or actively guard 

valuable assets during transfer. Freight transportation can also be optimized to avoid adverse 

weather conditions in real time. These are the applications that our project will enable. 

 

This team has worked to establish an autonomous vehicle testbed that will allow sophisticated 

testing of control algorithms in a protected, repeatable environment. Evaluating the reactions of 

air vehicles in a simulated environment reduces time and cost, while allowing the user to log, 

replay and explore critical events with greater precision. 

 

2 Project Summary 
Our submitted flight controller is able to stabilize a modeled aircraft and perform basic 

maneuvering given simulated data from FlightGear. Originally, we proposed a three layer 

abstraction process to design a robust flight path controller.  The process of control for any 

aircraft starts with the physical movement of the control surfaces. The position of these control 

surfaces is handled by a PID controller. Once tuned, maneuvers such as banking and ascending 

can be established. These maneuvers are the building blocks to complex flight paths. Hence there 

are three layers of control, namely: 

 

1. Inner Loop Stabilization 

2. Basic Maneuvering 

3. Advanced Flight Path 

 

Available open-source software aided with the first stage, but not to the extent originally 

intended. FlightGear is the free, open source flight simulator chosen for this project. It has the 

capabilities to model a wide variety of aircraft and ground vehicles quite realistically. FlightGear 

bridges real world tests with more complex possible scenarios, emulating sensors and state data 

such as GPS for our autopilot to parse and utilize. FlightGear provides a virtual environment 

with real feedback in which we can ‘fly’ our UAV. Open-source controllers also exist. UAV 

Playground is an open source Java application that we intended to adapt for optimal outer loop 

control of UAVs. It is a front-end application that connects to FlightGear using a socket 

connection. Due to a supposed memory leak with UAV Playground, however, we ultimately 

built a flight controller exclusively in C++ that succeeded in emulating everything in the released 

version of UAV Playground with additional maneuvering capabilities. 

 

Our C++ controller is able to feed realtime data generated by FlightGear through virtual PID 

control loops to stabilize the flight. The controller is able to interpret real-time user input and 

perform the desired maneuvers. Our controller also generates time-stamped NMEA files that can 

be parsed into Google Earth kml files and post processed after flight termination to verify 

maneuvering accuracy. 
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3 Augmentation and Evaluation of UAV Playground 
FlightGear is an open source, multi-platform flight simulator that has been in development since 

the 1990s. Researchers in academia, industry experts, and even hobbyists have used it to model 

aircraft, assess flight path performance, and on occasion have some fun. FlightGear is an 

attractive system for many reasons. First, the simulation engine, SimGear, allows for the user to 

customize a wide range of aircraft—gliders, rotary wing aircraft, personal planes, and airliners. 

This also enables proposed aircraft designs to be crudely tested in a simulated environment prior 

to production. Second, the flight dynamics model (FDM) is a high fidelity, non-linear, six 

degree-of-freedom simulation application that combines three parallel, independent data 

models—JSBSim, YASim and a derivative of UIUC. The FDM analyzes forces and disturbance 

torques to calculate aircraft motion with outstanding accuracy. In fact, the atmosphere is realistic 

enough to update with the current local weather and includes details such as eddy wind currents 

which can be toggled. 

 

 
Screen captures of the FlightGear virtual interface 

 

As a state simulator, FlightGear inherently lacks a flight controller. For hobbyists (or even pilots 

in mock cockpits), control input comes from the user through joystick voltage measurements. 

However, real-time attitude control is best automated through a programmable software 

controller that can respond with a qualitatively “high” frequency. Thus, FlightGear was designed 

from the beginning for dominantly open socket communication. Custom control interfaces can 

then be configured to receive state data and transmit control outputs. Many such FlightGear 

interfaces have been constructed and released both commercially and as open-source projects. 

One example is UAV Playground. However, few (if any) have been implemented at the 

University of Michigan Ann Arbor campus. 

 

UAV Playground is an open source Java applet that was Beta released in 2009. It allows for the 

real time control of simulated aircraft through stabilizing PID control loops. The socket protocols 

between FlightGear and UAV Playground are already defined, which is why we originally chose 

to work directly from this platform. Using UAV Playground allowed us to “black-box” both the 

controller-simulator interface and the inner loop stabilization controller. This would enable our 

team to begin testing flight algorithms immediately.  

 

We made great progress in developing flight maneuvers. Step two in our proposed project, after 

inner loop stabilization and prior to flight path algorithms, was to program basic maneuvers in 

flight—steady level turns, steady climb, steady descent. After reviewing the provided source 

code, we were able to design and successfully implement two significant features to the UAV 

Playground application: flight maneuvers (single circle, concentric circling, figure eight) and real 

time error plotting. 
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Original UAV Playground GUI compared with our augmentations 

 

Two principle java files were modified for our augmentations to UAV Playground: UAVsim.java 

and MissionController.java. By expanding the applet window, we were able to add radio buttons 

that toggled on three new flight states: Circle, Eight, and Concentric. Circling is coordinated by 

recording the current flight heading and banking to a specified roll of 20 degrees until matching 

the initial heading to within 5 degrees, at which point it levels. The figure eight is almost 

equivalent, except that the instead of leveling, it banks a negative 20 degrees until re-matching 

the initial heading. Finally, the concentric circle records the initial heading and the initial 

position. After the first circle, the plane flies level until reaching the new radius (+200 meters) 

away from the initial position. A PID loop over the roll angle ensures that plane follows each 

new specified radius (sample error is plotted in the figure above). These are implemented in the 

two submitted code files and our augmentations are marked by “//Aero 450 Edits Begin” and 

“//Aero 450 Edits End”. For the sake of simplicity, the rest of the UAV Playground source code 

was not submitted, but can be found online at: http://code.google.com/p/uavplayground/. Thus, 

our algorithms for basic maneuvering were proven to work. The figure below shows a data 

sample of our concentric circling flight path.  

 

Real Time Error Plotting 

3 Added Radio State Buttons Released Version 

http://code.google.com/p/uavplayground/
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Sample concentric flight path from UAV Playground plotted in Google Earth 

 

Many valuable software skills were learned throughout this entire process. First, we studied the 

accepted communication protocols from FlightGear and how to properly read and transmit state 

data. Second, we learned how to read and write object-oriented Java code—our course lectures in 

OOP helped with this considerably. In order to recompile the original UAV Playground source 

code, our team had to learn the Eclipse IDE for Java developers. This included creating new 

projects, properly referencing source/libraries, and debugging. Finally, we gained experience 

with the Processing language and IDE. Processing can compile java applets and uses its own 

language, which combines elements of Java with Arduino. We attempted to use Processing as an 

alternative to Eclipse following the suspected memory leak issues discussed next. 

 

4 Transition to C++ for Stabilization 
Within the scope of UAV Playground, our team was unable to move past basic maneuvering to 

flight path due to a presumed memory leak in UAV Playground. While working on the dual boot 

A2SYS computer, UAV Playground was compiled and run on the Linux platform but 

unexpectedly crashed after approximately 30 seconds of run time.  We observed the same 

behavior when we restarted our project in Windows. Significant effort was put forth to identify 

and mitigate the potential memory leak. We observed the computer’s dynamic memory 

overflowing before FlightGear crashed (requiring an OS restart). Although we did not have the 

capacity to run FlightGear and UAV Playground on our laptops, we were able to successfully 

compile and run on a Mac OS X Snow Leopard over Thanksgiving break—the UAV Playground 

data presented here was collected on a Mac.  

 

However, with only 30 seconds of run time available on campus (the Windows/Linux A2SYS 

machine), we decided to instead transition to a C++ implementation of UAV Playground.  

Creating a custom flight controller in C++ had many advantages. First, we were able to apply all 

of the C++ methods presented in class (classes, sockets, threads). Also, it resulted in a much 

more satisfying final product, since all of the code (with the exception of simple_sock) was 

written from scratch—nothing in our project is “black-boxed.” We were able to use much of the 

experience gained from our UAV Playground adventures (specifically XML protocol) in 

designing our C++ architecture.  
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This resulted in a slight project de-scope approved by Professor Atkins. The communication and 

stabilization functionality, originally black-boxed and considered complete, needed to be re-

created from scratch in C++. This cost us valuable development time and advanced flight path 

algorithms were no longer considered. Our C++ controller was only required to stabilize and 

maneuver (steady level, turning and climbing flight)—this was demonstrated through video 

during the presentation. 

 

5 Multi-Threaded Architecture 
Our C++ FlightGear controller was designed with simplicity in mind. We run a single main() 

function with six parallel threads, each with a different purpose and operating period as shown in 

the figure below. Our FlightGearIN and FlightGearOUT threads transmit and receive state data 

respectively at 10 Hz. The User Interface thread waits for new character commands from the 

user. The Control thread reads the shared data using mutexes, runs our three PID loops (the three 

rotational axes) and writes the commanded control outputs to the same shared data struct. Our 

Record thread output state data (tab delimited) to a new text file for the duration of the test. 

Finally, our GPS logging thread records the NMEA sentences as they are output by FlightGear. 

 

 
The ‘parent’ data struct is shared between all threads 

 

The shared data is a single struct passed as a void pointer to all simultaneous threads. This parent 

struct included two double buffers (fg_in and fg_out) and the User Interface struct (UI), which 

includes the mode (a character), an associated value for that mode, and a record toggle. Since it 

is a pointer, all the threads access the same block of memory and threads read the most accurate 

state numbers. Mutexes prevent errors in reading and writing to this memory block. 
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Implementation of threaded code and shared data 

 

6 Socket Communication  Between Processes 
FlightGear allows for external control of program parameters through the implementation of 

sockets. Sockets for input and output are specified during the program call via command line 

arguments. The following represents the function call with arguments that we use to start 

FlightGear. 

 

fgfs --generic=socket,out,10,127.0.0.1,5558,udp,FlightGearReceiver-Protocol --
generic=socket,in,10,,6002,udp,test --nmea=socket,out,10,127.0.0.1,5557,udp --
airport=ksfo --aircraft=c172p --in-air --altitude=1500 --vc=90 --heading=300 --
timeofday=noon --prop:/controls/switches/starter=1 --
prop:/instrumentation/attitude-indicator/config/tumble-flag=0 
 

Output sockets are used to obtain telemetry information such as heading, airspeed, position and 

orientation. Input sockets allow other programs to control the aircraft. A third socket known as 

the NMEA socket relays the position of the aircraft through NMEA sentences. It simulates the 

output of a commercial GPS module.  

 

6.1 Communication Protocol 
Communication between FlightGear and the program use the UDP protocol instead of TCP. We 

chose the UDP socket protocol for our project for the following reasons: 

 

a) No need for TCP error checking as both programs run on the same machine 

b) Simpler and Faster 

Data is sent from FlightGear at the rate of 10 Hz. Users have the option to specify which 

telemetry to receive through a configuration file placed in the FlightGear program directories. 

We decided to use the UAVPlayground config file as we were familiar with its functionality and 

knew it worked. Telemetry such as heading direction, air speed, etc is inputted from FlighGear to 

augment control algorithms. Refer to Appendix B for detailed operation procedures. 
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The input data needs to be parsed so that the telemetry can be used by the control algorithms. 

The parser for the input data is a state machine that is able to extract data by counting the number 

of ‘>’ characters which is used by the XML to specify data structures. The value is stored to a 

string buffer and then converted to a double using the atof function. 

 

The output data is formatted according to the UAV Playground XML config file which specifies 

it to be four float values separated by tabs and delimitated by a newline. FlightGear takes in 

aileron, elevator, rudder and throttle as input commands. The following line produces the 

command string which is sent to FlightGear. 

 

sprintf(buff, "%1.3f\t%1.3f\t%1.3f\t%1.3f\r\n", data_r->fg_out[0],data_r-

>fg_out[1],data_r->fg_out[2],data_r->fg_out[3]); 

 

Professor Atkins provided us with the socket connection code (simple_sock) which allowed us to 

concentrate on the protocol issues right away. A slight modification was necessary to Professor 

Atkin’s code to meet our requirements. The buffer for output data and input data was either too 

large or too small. This was fixed by transitioning to a dynamic implementation so that data of 

varying lengths can be transmitted and received effectively. 

 

Another issue we encountered was the length of the output command string changing as a result 

of negative values. As data is passed as a string and not binary negative values caused the length 

to change because of the ‘-‘ sign. 

 

7 Data Logging and Data Sharing 
A significant amount of data processing and data sharing is involved in our project. Data coming 

from FlightGear needs to be interpreted by the flight controller which, in turn, produces output 

that needs to be fed back to FlightGear. All of this takes place while loggers record all the input 

and output data to text files for post processing. The fact that each function runs on independent 

loops and different speeds necessitates a centralized and synchronized data sharing process. Data 

is shared via a common data structure that is passed to all threads. The structure contains arrays 

to hold input and output data as well flight modes which gets set by the User Input thread. We 

use mutexes to handle data access. This prevents read/write errors and data corruption that could 

be caused by multiple threads to access the same data points. There are three Mutexs that are 

used in the program 

 

i) OutMutex – Protects Command data 

ii) InMutex – Protects Telemetry data 

iii) UIMutex – Protects Flight mode data 

Every operation on the shared data structure, even checking of Boolean values, is protected by 

the mutexs. 

 

As noted, all of the data is logged. This also allows us to import the telemetry and data into 

programs such as Matlab and Excel where we can analyze the performance of the PID controller 

gains. The user has the option to start or stop the logging at any point during the flight. 
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8 GPS Parsing and Recording 
FlightGear is able to mimic GPS module output through the NMEA socket. The NMEA sentence 

format is a standard method of reporting GPS fix and GPS satellite information. The following 

sample line is one of the most commonly used sentences which reports time, latitude, longitude 

and altitude information. 

 

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 

 

The GPS parser is a state machine that checks for the GPGGA sequence then counts the commas 

to discern the locations of the various fields. These fields are stored in buffer of chars. Then 

using the function “atof()” the string value is converted to a double. The latitude and longitude 

information undergoes further processing as the minutes and degrees need to be converted to a 

decimal value. Our program uses the parsed data to generate a Google Earth kml file. The kml 

file is a specific type of XML file that is used to store a set of points to be displayed in Google 

Earth. The figure below, which shows our controller commanding a steady level turn, is 

generated by this parsing process.  

 

  
Steady level turn executed by the aircraft 

 

9 Terminal Input 
Once the control software starts (fghead), the user is given the option to enter an input mode. 

There are four main input modes that are available to the user. The first, given by the ‘l’ 

command, is fly level. The program will stabilize the plane into a safe and level state. This is 

done by commanding both the roll and pitch to zero in the PID controller. This mode also takes 

no input value. The second mode, given by the ‘a’ command, takes in a desired altitude as the 

input value. The plane then commands the pitch to either a positive 10˚ pitch to increase altitude 

or a negative 10˚ pitch to decrease the altitude. When the current altitude is within 50 feet of the 

desired altitude, the program issues the fly level command by setting the input mode to ‘l’. The 

third mode, given by the ‘h’ command, takes in a desired heading as the input value. The plane 

then determines whether it is shorter to turn to the right or to the left. The roll is then commanded 

to positive 20˚ or negative 20˚ to roll right or left, respectively. When the current heading is 

within 5˚ of the desired heading the program issues the fly level command similar to the change 

altitude mode. The last user command is the quit mode which is given by the ‘q’ command. This 
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command takes no input and simply turns the current controller off so that the plane can be 

manually controlled by the user.  

 

10 Control Architecture 
A PID controller is useful to maintain a set measurement without the need for an operator to 

constantly make adjustments. The controller used for this project is a basic PID controller as 

shown below. The program will take in a commanded value (yc) and subtract the current value 

(y) from it to get the error (e(t)). In our case, the commanded value would be a 0˚ roll angle for 

the fly level mode with a possible current value equal to 20˚ if the plane were just coming out of 

a turning maneuver. The program will sample this current state at 10 Hz and feed it into the PID 

control function. The controller then sends this error value (e(t)) through the proportional, 

integral, and derivative gains. The tuning of these gains will be described later. The sum of these 

gains is then used to control the elevator (      and ailerons (    . For our simple model, we are 

not currently using the rudder (    . The code, however, is written to be able to accept a rudder 

value if we choose to set it. 

 

 
Idealize PID feedback controller 

 

In order to tune the PID controller for each degree of freedom, we followed a basic procedure by 

starting with the proportional gain (P-gain) and then working to the derivative gain (D-gain), and 

finally the integral gain (I-gain). Throughout the process, previous gains were also slightly 

altered to create even better results. In the scope of this report, we demonstrate the procedure 

undertaken for tuning our roll PID gains, because the magnitude of pitch oscillations was less 

pronounced. The method was identical. 

10.1 Stabilization 
In order to see the full effect of the P-gain gain, we began by setting it to 0.5 then reduced it to 

0.1 as shown below. The oscillations in these graphs are obviously undesirable. However, it is 

good to see that as the P-gain is decreased the amplitude of the oscillations is also decreased. We 

can continue to improve this controller by a reduction in the P-gain. 
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After a reduction of the P-gain to 0.07 the roll begins to stabilize after a few oscillations. Then, 

when the P-gain is reduced again to a value of 0.015, we get something closer to what we are 

looking for. The roll seems to be relatively stable; however, there is a noticeable steady-state 

error. This can be fixed with the addition of an I-gain. 

 

 

 
 

We started the I-gain at a high value of 0.2 to see what exactly it was doing to the roll. As shown 

below the I-gain has gotten rid of the steady-state error we saw before, but it also added a lot of 

oscillations. The addition of a D-gain can help to stabilize the roll, but first we want to create a 

better roll signal by reducing the I-gain.  
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After a reduction in the I-gain to 0.017 we have a much better roll to work with when adding a 

D-gain. If the I-gain gets too low as in the case with I-gain = 0.01. We see that the purpose of 

adding the I-gain is not being fulfilled. The steady-state error is still visible. Therefore, we want 

an I-gain somewhere around 0.017 and greater-than 0.01. 

 

 
 

 

 
 

With the current P-gain set to about 0.015 and the current I-gain set to about 0.017, it is time to 

see what the addition of the D-gain will do for us. Again, we started off with a high D-gain of 0.1 

in order to see what exactly it could do. This high D-gain caused the roll to become unstable so 

we continued to reduce the D-gain until this effect went away. 

 

 
 

 

In conclusion, we chose a P-gain of 0.012, an I-gain of 0.015 and a D-gain of 0.01. These gains 

give the signal shown below. As shown, the roll moves quite quickly to the commanded value of 

0˚ with one slight overshoot before stabilizing.  
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10.2 Steady Flight Maneuvers 
With steady level flight (stabilization about 0 degrees) properly tuned, we were able to move 

forward with basic maneuvering. The one described here is a sample of a steady level turn, 

although our controller is able to perform an equivalent steady climb and the results are almost 

identical. 

 

As an example, we initialized FlightGear to a heading of 300 degrees. After approximately 10 

seconds, the user commanded a new heading of 345 degrees. The plane promptly banked right 

until reaching the desired heading—at which point it set the flight mode to ‘l’ for steady level 

flight.  The following figure shows the recorded heading during flight and the subsequent one 

displays the commanded aileron position from the beginning to end of the turn. 

 

 

 
 

Thus, these Matlab plots showing command and control outputs demonstrate the capabilities of 

our FlightGear communicator and controller. After de-scoping from advanced flight path and 

optimizing trajectories, enabling the basic control through robust communication became our 

primary objective, which we successfully delivered and demonstrated. 
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11 System Performance 
The primary metrics in evaluating the performance of our testbed are repeatability and reliability. 

By delivering a pure software based testbed, we have enabled researchers the ability to replay 

and repeat specific control algorithms with greater precision or with incremental adjustments. 

We proved the repeatability of our system by hard coding a steady level turn of 345 degrees after 

10 seconds of run time.  This test was run twice from the same initial position (airport and 

altitude) and nearly the same time of day (offset by 1 minute, the duration of Trial 1). Note that 

realtime weather was enabled. 

 

 
Trial 1 and Trial 2 are identical in a steady level turn 

 

The errors between trials at any given time were less than the realistic precision in aircraft state 

(for heading—errors smaller than arc-seconds). Thus we concluded that our testbed was reliable 

and repeatable. Also, since it is open source and easily editable, the controller can be tuned, 

adjusted, or fully replaced quite easily and quickly. 

 

Regarding measured processing time, our custom C++ architecture exhibited none of the 

memory leaks observed with UAV Playground. Unlike UAV Playground, our custom controller 

is multi-threaded so that transmit and receive periods can be appropriately coordinated. Worst 

case operating period is less of a concern for this testbed than it would be for an operational 

controller on an embedded system. However, it was important to stagger threads with usleep 

commands in order to limit the access to shared data. For example, our control thread can 

operate at a frequency greater than 100 Hz. Since our send and receive threads are only 

configured to run at 10 Hz, our controller would redundantly enable the mutexes 10 more times 

than required per cycle. Thus, we included enough sleep for the control thread to operate at 

approximately 20 Hz. This still ensures that we do not miss a telemetry reading. 

 

Of course, our send and receive socket functions could update at much higher frequencies, 

especially on a shared machine. However, with UDP protocol, there is inherently greater risk in 

losing telemetry. We chose to imitate a real-time embedded system as closely as possible—many 

commercial GPS modules operate between 1 and 10 Hz which motivates our designed 

processing time. In the scope of this project, we have designed a testbed more than a specific 

controller. Although we did prove acceptable PID control, repeatability of the system was a 

bigger driver than runtime of a specific control algorithm. 

 

12 Education Value 
FlightGear was the ideal platform to test all of the skills developed through AERO 450, Flight 

Software Systems. As a team, we were able to devote all of our time to the software and let 

FightGear simulate the hardware for us. This allowed us to avoid sinking time into 
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malfunctioning hardware. During the project, we were able to gain experience working with both 

the Java and C++ languages. 

 

We started with trying to debug Java then moved to C++ when the scope of the project was 

changed. We have also become familiar with using more code editing software such as Eclipse. 

Within the C++ language, we were able to look more closely at some of the advanced C++ 

programming taught in this course such as sockets (TCP/UDP) and multi-threaded code. Lastly, 

we have successfully merged our software knowledge with real-time aerospace control theory, 

implemented a PID controller to stabilize the aircraft, and logged and post-processed sensor and 

GPS data. 

 

13 Broader Impacts 
The past decade has seen the widespread introduction of free and open source software to the 

public domain. This movement refers to the freedom to copy and improve upon available source 

code.  Such a peer-to-peer development strategy has advanced the scope of functional 

electronics, for the benefit of both individual and corporate growth. Over this semester, our team 

has used and built upon these readily accessible tools to efficiently begin work on this testbed.  

 

The results of our work are expected to be delivered to the open source community at the 

conclusion of the semester. In the same way we are building on existing foundations, future 

researchers will be able to contribute to our work. Moreover, through the increasing 

globalization of shared data, this flexible testing platform can be distributed to academia and 

research labs across the globe. 

 

An established autonomous vehicle testbed provides researchers with an intermediary step 

between software protocols and full scale reality. Such technology will accelerate the 

contributions to the emergent field of Unmanned Arial Vehicles.  
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Appendix A: Original Proposal Schematic 
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Appendix B: Procedure for Running our Final Project 
 

All procedures are assumed that the user is running in a linux environment. 

 

Copy the XML protocol files (FlightGearSender-Protocol.xml and FlightGearReceiver-

Protocol.xml) into the FlightGear source folder (/usr/share/games/flightgear/) 

 

Configure the fghead.sh batch file with the current directory (chmod +x fghead.sh). Run the 

FlightGear application by executing fghead.sh 

 

Open a second terminal, wait approximately 10 seconds, and run fghead 

 

Wait for the UDP sockets to open (a message will appear in the terminal) and choose desired 

flying mode. FlightGear will reflect the controller’s operation. 

  

 
Sample desktop setup 


