
Communication, Navigation and

Control using FlightGear Simulations

Aero 450: Flight Software Systems

December 10, 2012

Duncan Miller

Hrishi Shelar

Joshua Thomas

Introduction & Motivation

• Autonomous, unmanned aerial vehicles
(UAVs) are beginning to operate regularly in
the National Airspace System

• There is an increasing need to test the
coordination and control of flight vehicles to
optimize operations and flight paths

• An autonomous vehicle testbed would allow
sophisticated testing of control algorithms in a
protected, repeatable environment

Project Proposal

• Design an aircraft controller that will generate
different flight patterns based on ground
object movement
– Use simulated input and the FlightGear

environment to solve real-world applications

– Build on open source software as much as
possible

• Three main building blocks for the project:
1. Inner loop stabilization

2. Basic Maneuvering

3. Advanced Flight Path

What is FlightGear?

• Free open-source flight
simulator development project

• 3D rendering of aircraft and
surrounding area

– Realisticupdates with local
weather!

• Outputs: position, roll, pitch,
yaw, airspeed, angular
velocities

• Inputs: flap deflections, throttle

UAV Playground

• Open source Java application

• Enables us to begin testing
flight algorithms immediately

FlightGear socket
communication

Inner-loop stabilization

Data and gps logging

Preliminary Augmentations

• Real-time error plotting

• Three new flight modes: looping, concentric
circling, figure-8

Memory Leaks

• The “platform independent” language (Java)
perhaps not so platform independent

• Our team needed to learn how to create and
compile projects in both Eclipse and the
Processing IDE

• UAV Playground proven to operate on Mac OS

• In both Linux and Windows, program crashed
after 30 seconds of runtime

– Suspected memory leak still an open question

Transition to C++

• Reasons for transition:
– Unable to resolve memory overflow of UAV

Playground
– More satisfying constructing a functioning program

from scratch
– More experience with the C++ functions presented in

class (sockets, threads)

• Resulted in project de-scope:
– The stabilization functionality, originally black-boxed

and considered complete, had to be re-created in C++
– Basic maneuvering (steady level, turning and climbing)

completed
– Applications of flight path not considered

Threaded Architecture

Data Structure and Data Sharing

• The ‘parent’ data struct is shared between all
threads

 Header (.h) Main (.cpp)

Etc…

Socket Communication

• Use of UDP protocol over sockets to establish link
between FlightGear and the program
– Sockets on the same machine

– No error checking, hence faster

• Three sockets
– FlightGear out: Telemetry such as altitude, heading,

speed, etc.

– FlightGear in: Commands for throttle, aileron, elevator
and rudder

– NMEA out: GPS location

Communication Protocol

• Protocol specified by XML files placed in
FlightGear program folder

• FlightGear out generated XML file that contained
17 telemetry fields (mimicked UAV playground
protocol)

• FlightGear in received commanded values
separated by tabs (mimicked UAV playground
protocol)

• NMEA out generated NMEA sentences (simulated
a GPS module)

Data Sharing

• Telemetry data, Command data and User
Input stored in common structure

• Passed to each thread

• Every read/write function on common data is
protected by mutexs

• Three Mutexs
– OutMutex

– InMutex

– UIMutex

Bugs and Difficulties

• Used Simple_Sock functions given to us by Prof.
Atkins

• Buffer size that held incoming socket data too
small

• Buffer size that held outgoing socket data too big

• Troubleshooting:
– FlightGear interpreted newline as ‘\r\n’ as compared

to ‘\n’

– Negative values caused buffer size to change because
of ‘-’ sign

Buffers and Data Parsing

• Input data stored to buffer than passed to parse
function

• Self-written state machine to parse XML telemetry
data.
– Worked by counting ‘>’

• Output data taken from shared data structure.
– Four float values, separated by tabs. End with ‘\r\n’
– sprintf(buff, "%1.3f\t%1.3f\t%1.3f\t%1.3f\r\n", data_r-

>fg_out[0],data_r->fg_out[1],data_r->fg_out[2],data_r-
>fg_out[3]);

– Socket buffer size changed with each command depending
on number of ‘-’ signs

Data Logging

• Data logged at a rate of 20 Hz

• Both Telemetry and Commanded values

• Mutex locking while reading in values from
the shared data structure

• User option to start/stop logging

• Stored in “.txt” file that can be imported into
Matlab, etc for post processing

GPS and KML

• NMEA is standard GPS module output format

• $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.
9,545.4,M,46.9,M,,*47

• Time, latitude, longitude, and altitude
information

• Parser used state machine to check for $GPGGA
then count commas

• Google Earth KML file is type of XML file

• KML file updated at 1 Hz with new fix data

Google Earth Plot

KML File read by Google Earth

User input

• Input thread takes in user commands from the keyboard
• Fly level ‘l’

– Program stabilizes the plane into a safe, level state

• Change altitude ‘a’
– User inputs desired altitude and plane pitches up/down to

achieve desired state

• Change heading ‘h’
– User inputs desired compass heading and plane banks to

achieve desired state

• Quit ‘q’
– Program returns control of the plane to the user

PID Control

• Standard PID control feedback
• Rudder (∆𝛿𝑟) 𝑖𝑠 𝑛𝑜𝑡 𝑏𝑒𝑖𝑛𝑔 𝑢𝑠𝑒𝑑
• Pitch is controlled with a P controller
• Roll is controlled with a PID controller
• Current Gains used

Kp = 0.02
Kd = 0.01
Ki = 0.01

P 𝐾𝑝 𝑒 𝑡

I 𝐾𝑖 𝑒 𝜏 𝑑𝜏
𝑡

0

D 𝐾𝑑
𝑑𝑒 𝑡

𝑑𝑡

Aircraft
yC e(t) y ∆𝛿𝑒∆𝛿𝑎

Modes and parameters

• Samples current state at 10 Hz and feeds error into PID control
function

• Commands flaps to desired position

• Fly level ‘l’
– Commands roll and pitch to zero

• Change altitude ‘a’
– Commands pitch to +/- 10˚

– Levels out when within 50ft of desired altitude

• Change heading ‘h’
– Commands roll to +/- 20˚

– Switches to mode ‘l’ when within 5˚ of desired heading

• Quit ‘q’
– Returns no commanded control to FlightGear

• Fly level
– Y_c

• Change altitude
– Takes in new desired altitude

– Program determines whether to pitch up or down

• Change heading
– Takes in new desired heading

– Program determines closest direction to turn

Videos – Stabilization and Turning

Plots and Results - Level Flight
P=0.02 I=0.01 D=0.01 P=0.02 I=0.0 D=0.01

Plots and Results – Turning Flight

Skills and Lessons Learned

• Learned and applied the Java language and
Processing IDE to create/augment a GUI

• Learned to compile projects and libraries in
Eclipse

• Successfully demonstrated socket communication
in a runtime environment

• Implemented PID controllers in roll, pitch and
yaw for a commanded flight mode

• Gained experience with advanced C++
capabilities (multi-threaded code)

Future Work

Before semester end:
• Optimize specific gains for roll/pitch/yaw
• Comment code
• Additional error plotting and GPS paths in Google

Earth
• Write final report
Potential testbed applications:
• Continue on original proposed project plan

– Ground vehicle tracking (loiter, protect, survey)

• Simultaneous control of multiple flight vehicles
– In-flight refueling algorithms

Back-up Slides

• Expanded control system (original)

