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BACKGROUND 

 

The CubeSat Investigating Atmospheric Density Response to Extreme Driving (CADRE) is the 

next spacecraft mission under development at the University of Michigan. The overarching 

science mission is to characterize the thermosphere to better predict orbital trajectories of free 

bodies. CADRE's primary payload, WINCS, is a sensitive instrument that can measure solar 

winds in the ionosphere using a collection of mass spectrometers. In order for its data to be 

reliable it needs to maintain a 1 degree of pointing accuracy (2 degree cone) with a 0.1 degree 

determination. These high tolerances demand a very robust ADCS architecture. 

 

COORDINATE DEFINITONS 

 

Most CADRE documentation follows the body fixed coordinate system in Figure 1 (left) to 

comply with P-Pod requirements. However, in the scope of this analysis, I use the coordinate 

system shown in Figure 1 (right). This defines +Z as the direction of motion, +X away from the 

Earth, and +Y completes the right hand rule. 

 

 
Figure 1: Body Fixed Coordinate Systems for P-Pod (left) and for orbit analysis (right) 

 

The distinction is important, because CADRE flies (unusually) at a 45 degree angle with respect 

to the radial direction. This orientation is advantageous because we can downlink from both 

patch antennas to the ground without the use of a slew maneuver. The drawback to this is that 

Structures has had to mount the momentum wheels at a 45 degree angle within the spacecraft, 

which is necessary to save power. 

 

Using the second (hand drawn) coordinate system, mass moments of inertia were calculated in 

my SolidWorks model. As body fixed quantities, they are constant in the body fixed frame 

(BFF). Since the equations of motion for rotational dynamics are derived in the BFF, the mass 

moments of inertia are constant in this frame. 

 

OUTER LOOP CONTROL 

 

WINCS collects measurements of the ion winds, which show greatest fluctuations over the poles. 

For this reason, CADRE is expected to fly in a 500 km altitude orbit with an inclination between 

45 degrees and 90 degrees. I have written a code that solves the equations of motion (acted on 
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purely by gravity) of the center of mass and resolves the position of CADRE over the course of 

10 orbits, at 90 degrees inclination. Graphically, Figure 2 shows the flight path of CADRE. 

CADRE’s final orbital characteristics will only be determined after we have been matched with a 

specific rocket. 

 
Figure 2: Nominal orbit about Earth 

 

 

INNER LOOP STABILIZATION 

 

Although the center of mass is expected to follow the path shown in Figure 2, the orientation of 

CADRE must be perfect if the science measurements from WINCS can be used. There is a ±1° 

pointing accuracy required (2° cone) with a very high tolerance 0.1° determination. This 

ambitious requirement drives the need for precise three axis control. Stabilization will come from 

three forces: magnetorquers (active), reaction wheels (active), drag panels (passive). Position 

location comes from both Two Line Elements (TLEs), GPS data, and a startracker. The 

orientation is determined from two sunsensors, gyroscopes (integrated over time), and the star 

tracker.  

 

Thus, the rotational equations of motion are critical in resolving the coupled behavior of the 

CADRE spacecraft when disturbed from equilibrium. These rotation dyamics are defined as 

follows. 
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Disturbance from this equilibrium must be first measured, and then countered using on board 

controllers. In general, the roll rotation rates can be linearized about the equilibrium condition 

and solved for small disturbances. The first step in solving Euler’s equation, however, is to 

quantify the disturbance torques acting on CADRE (     ).  
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This report identifies the external forces acting on CADRE. The sum of the torques will be used 

as a worst case scenario requirement, which will drive actuator selection. I have performed a 

comprehensive trade study that selects the recommended components for this mission. 

 

By following the recommended SMAD analysis for Attitude, Determination, and Control, I have 

identified the 5 primary external forces acting on CADRE during the mission. The details are 

summarized in Table 1. 

 

 

Parameter Definition Parameters 

Atmospheric Drag 

Force 
              ( ) 

 

        
    (   ) 

N Normal vector of body face 

D Drag vector 

  Atmospheric density 

   Coefficient of drag 

A Cross sectional area 

v  velocity relative to atmosphere 

Atmospheric 

Torque about cg 
          P lever arm, distance between center 

of aerodynamic pressure, and cg 

Gravity Gradient 
   

  

   
           (  ) 

                  
                              

                              
Solar Radiation 

Pressure 
   

 

  
 (   )(   ) 

   universal solar constant 

c, speed of light 

A, surface area 

Q, panel reflectance 

S, sun vector (gives angle of 

incidence) 

Magnetic 

Disturbance 

Torque 

      

  
   

    
    (     ( ) ) 

   

  
magnetic dipole moment 

R, distance to center of Earth 

  magnetic lattitude 

Table 1: Disturbance torque definitions 

 

The next step was to model these forces over the course of an entire orbit. To do this, I began by 

referencing an Excel spread sheet compiled by Professor Ridley. It defines normal vectors of all 

6 body faces and all 8 deployable panel faces. It also calculates the sun vector relative to the 

Body Fixed Frame at all points in the orbit. The orbit was discretized into 60 second steps and 

has so far been primarily used in thermal analyses (calculating maximum temperature in full sun 

and eclipse). It has now been applied to attitude determination and control. Appendix C 

summarizes many of the constants used in the Matlab analysis. 

 

From the results of my analysis, I have calculated the net reaction torque on CADRE at every 

time of a single orbit, assuming small disturbance. Figure 3 shows the instantaneous torque over 

the course of a single orbit. 
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Figure 3: Net total torque  acting on CADRE during one orbit 

 

Two criteria that drive momentum wheel selection are maximum torque and maximum 

momentum storage. In order to maintain the equilibrium orientation, the three momentum wheels 

in three perpendicular directions speed up or slow down in order to counteract the external 

torques. Conservation of angular momentum allows us to do this—spinning a wheel faster (or 

slower) in one direction, spins CADRE in the opposite direction. This change in momentum is 

the counteracting torque. By orienting the wheels at a 45 degree angle inside of the body, we 

only need to power a single wheel at once for pitch stability (this helps our power budget). 

 

The second principle concept is that the wheels have a limited maximum rotation speed. If the 

wheels are continuously changing momentum to counter balance the external torques, then the 

spin rate will increase until it has reached the maximum rotation speed. This known as saturation 

and the spacecraft will begin to deviate from equilibrium.  

 

Desaturation is done by actuating the magnetorquers and at the same time letting the wheels de-

spin. Typically, this is done only once or twice per orbit (when the magnetic field is a 

maximum), so the wheels must be able to store up to the maximum integrated torque 

(momentum) according to Figure 4. 
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Figure 4: Net stored torque (momentum) required by reaction wheels 

 

This model gages the necessary actuators (momentum wheels), which in turn drive our 

magnetorquers. To ensure that we meet the system control requirement (with 0.1 degree 

determination), I have compiled a comprehensive trade study of available ADCS packages that I 

could find for purchase online. It includes the relevant specifications (mass, power, strength, 

accuracy, heritage) where available and will allow the ADCS to select the best components for 

our mission. 

 

First, the driver for momentum wheels is momentum storage—all of those options identified 

exceed the 500nN-m expected torque. Thus, I recommend the Maryland Aerospace Institute 300 

series ADCS system, which can store 7.6 mN-m-s per wheel, above that predicted by Figure 4. 

Second, I will recommend the ISIS magnetorquer board due to its heritage on past Pumpkin 

missions.  

 

The determination requirement is even finer than control, because accurate pointing knowledge 

can compensate (to a degree) for poor pointing direction. We can effectively back out accurate 

data if we have previously characterized the system behavior in ground testing. Thus, I have 

traded a number of available sun sensors, IMUs and star trackers to  

 

First, I recommend the Sinclair Interplanetary S3S star tracker because Boeing is providing this 

(>$100,000) instrument to us for no cost. It allows us to measure the orientation of CADRE to 

within a 0.01 degree envelope of accuracy (with a known error margin). Second, I recommend 

two ISIS miniaturized Analog Fine Sun Sensors as redundant corroboration with the star tracker. 

Moreover, the field of view is the widest that I could find, which will help coarsely gage our 

orientation before the star tracker takes over. Thirdly, I recommend the CubeSat shop 

magnetometer due to its widespread use and availability. Finally, the gyroscopes (housed within 

our IMU box) that should be selected are the Analog Devices ADIS16405. They were used on 

RAX, so in addition to past heritage, Michigan students have experience integrating them.  
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APPENDIX A : Orbit Simulation 
 

%Duncan Miller 
%CADRE Nominal Orbit 

  
clear all 
close all 
clc 

  
alt=500 %km 
mu=398600; 
Re      = 6378;      % Earth Radius (km) 
v0=sqrt(mu/(Re+alt)); 
R0=[Re+alt, 0,0]; 
V0=[0,0,v0]; 
X0 = [R0; V0]; 

  
t0     = 0; 
tstep  = 20;        % sec 
tfinal = 30*pi/sqrt(mu/(Re+alt)^3); % approximately 1 orbit 
tspan    = t0:tstep:tfinal; 
options = odeset('AbsTol',1e-6,'RelTol',1e-8); 
[Tp, Xp] = ode45(@newton,tspan,X0, options); 

  
figure(1);hold off; 
plot3(Xp(:,1),Xp(:,2),Xp(:,3),'g-','linewidth',3) 
xlabel('x (km)','fontsize',16); 
ylabel('y (km)','fontsize',16); 
zlabel('z (km)','fontsize',16) 
set(gca,'fontsize',16) 

  

  
% plot the Earth 
[XS, YS, ZS] = sphere(30); 
figure(1); 
hold on; 
surf(XS*Re, YS*Re, ZS*Re); 
axis([-1e4, 1e4, -1e4, 1e4, -1e4, 1e4]) 
set(gca,'fontsize',16) 

 

% Right hand side of Newton's 2BP equations (zero perturbation force) 

  
function Xdot = newton(t,X) 
 mu = 398600.4405;     % gravitational constant for Earth (km^3/s^2)  
 r  = X(1:3);          % position (km) 
 v  = X(4:6);          % velocity (km/sec) 
Xdot(1:3)  = v; 
rn         = norm(r); 
Xdot(4:6)  = -mu/rn^3*r; 

  
Xdot       = Xdot(:); % convert to vector colum 

  
return; 
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APPENDIX B: Sensors Trade Table 
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APPENDIX C 

 

 

  

Constant Value 

Gravitational Constant (Earth) 3.986x10
14

 m
3
/s

2
 

Moments of Inertia, Iz Iy 0.047 kg-m
2
, 0.012 kg-m

2
 

Drag Coefficient,    2.0 

Atm Pressure       Pa 

Velocity 1.2 km/s 

Panel Reflectance 0.6 

Speed of Light 3x10
8
 m/s 

Universal Solar Constant,   1366 W/m
2
 

Residual Dipole, D 0.01 A-m
2
 

Magnetic Dipole moment (Earth) 7.84x10
15

 Tesla-m
3
  

Radius of the Earth 6372000 m 

Mass of Earth 5.97x10
24

 

Inclination 89.9 degrees 

Altitude 500 km 

Local Time 0 

S/C Roll Angle 45 degrees 
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APPENDIX D: Particular Torque Disturbances 

0 1000 2000 3000 4000 5000 6000
-200

-150

-100

-50

0

50

100

150

200

Time (sec)

T
o
rq

u
e
 (

n
N

m
)

Drag Torque

 

 

X-axis torque

Y-axis torque

Z-axis torque

0 1000 2000 3000 4000 5000 6000
-500

-450

-400

-350

-300

-250

-200

Time (sec)

M
a
g
n
e
ti
c
 T

o
rq

u
e
 (

n
N

m
)

Incident Magnetic Torque

 

 

X-axis torque



11 
 

 
  

0 1000 2000 3000 4000 5000 6000
-40

-20

0

20

40

60

80

100

Time (sec)

M
o
m

e
n
t 

(n
N

m
)

Incident Solar Torque

 

 

X-axis torque

Y-axis torque

Z-axis torque



12 
 

APPENDIX E: 

Disturbance Torque Code 
%Aero 348 Run File 

  
clear all 
clc 
close all 
%% Inputs 

  
d2r=pi()/180; 
%Panel Angle 
a=45*d2r; 
%Panel Length 
l=1; 
%Spacecraft Orientation 
r=45*d2r; %deg 
%Center of Gravity shift 
cg=-4; %cm 
%Moments of Inertia 
I_z=478836/1000/100^2; %From STR Subsystem 
I_y=121134/1000/100^2; 
%Orbit Altitude 
alt=500; %km 
%Residual Dipole 
Md=[0;0;0.01]; %0.009 A-m^2 estimated by NRL Space Dart 
                %This assumes that the dipole field of the space craft is 
                %aligned along the Z axis meaning it will only produce 
                %torques about the X and Y axis (Pitch and Yaw, no roll) 
%Pointing Requirement 
theta=1; %deg 

  
%Spacecraft Mass 
mass=4; %kg 

  
%% Setup 
[n_h,P,A,Q] = CADREsetup(a,l,r,cg); 
P=P/100; %convert cm to m 
x=linspace(0,0,101); 
y=linspace(0,0,101); 
i=1; 
T=XLSREAD('Orbit_Power.xlsx','Sheet1','A43:A143'); %Discretized time (60 

secs/step) 
lat=XLSREAD('Orbit_Power.xlsx','Sheet1','D43:D143'); 
lat=abs(lat); 
S=XLSREAD('Orbit_Power.xlsx','Sheet1','S43:U143')'*-1; %Sun vector at all 

times 
N=XLSREAD('Orbit_Power.xlsx','Sheet1','V43:V143');    %In Eclipse or not? 
M_tot=zeros(3,101); 

  
%% Calculate Moments 

  
%Allocations 
M_s=zeros(3,101); 
M_b=zeros(3,101); 
M=zeros(3,101); 



13 
 

M_tot=zeros(3,101); 

  
h_t=zeros(3,101); 

  
%Gravity Grad 

  
M_g=[0;0;0]; %Allocation 
M_g(2) = GravForce(alt,I_z,I_y,theta); 

  

  
for i=1:101 
%Magnetic 
    [M_b(:,i)] = BForce(alt,lat(i),Md); %Calculate Magnetic Disturbance 

  
%Solar 
    if N(i) == 1 %Check for Eclipse 
        M_s(:,i)=[0;0;0]; 
        M_s(:,i)=[0;0;0]; 
    else 
    [M_s(:,i), M_ds] = sunForce(S(:,i),n_h,P,A,Q); %Calculate Moment 
    end 

  
%Drag 
    M_tot(:,i)=[M_b(1,i)+M_s(1,i), M_g(2)+M_b(1,i)+M_s(2,i), 

M_b(1,i)+M_s(3,i)]'; 

  
    D=dragVector(M_tot(:,i),cg,mass); 
    [M(:,i)] = dragForce(D,n_h,P,A); %Calculate Drag force 

     
    M_tot(:,i)=M_tot(:,i)+M(:,i); 
end 
%% Calculate Momentum storage 

  
for i=1:100 
h_t(:,i+1)=h_t(:,i)+(T(i+1)-T(i))*M_tot(:,i); 
end 

  

  
%% Plots 
figure(1) 
plot(T,M_s*10^9) 
xlabel('Time (sec)') 
ylabel('Moment (nNm)') 
title('Incident Solar Torque') 
legend('X-axis torque','Y-axis torque','Z-axis torque') 
print figure(1) -djpeg 

  
figure(2) 
plot(T,M*10^9) 
xlabel('Time (sec)') 
ylabel('Torque (nNm)') 
title('Drag Torque') 
legend('X-axis torque','Y-axis torque','Z-axis torque') 
print figure(2) -djpeg 
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figure(3) 
plot(T,M_b(1,:)*10^9) 
xlabel('Time (sec)') 
ylabel('Magnetic Torque (nNm)') 
title('Incident Magnetic Torque') 
legend('X-axis torque','Y-axis torque','Z-axis torque') 
print figure(3) -djpeg 

  
figure(4) 
plot(T,M_tot*10^9) 
xlabel('Time (sec)') 
ylabel('Moment (nNm)') 
title('Incident Total Torque') 
legend('X-axis torque','Y-axis torque','Z-axis torque') 
print figure(4) -djpeg 

  
figure(5) 
plot(T,h_t*10^6) 
xlabel('Time (sec)') 
ylabel('Moment (uNm)') 
title('Stored Total Torque') 
legend('X-axis torque','Y-axis torque','Z-axis torque') 
print figure(5) -djpeg 

 

 

 

function [M_b, B] = BForce(alt,lat,Dm) 
%Assuming cp_s is close to the panel cm 
%Magnetic Force Calculation 

  
B=7.84e15/(((alt+6378)*10^3)^3)*sqrt(1+3*sin(lat*pi()/180)^2); 

  
B=[-B;B;0]; 

  
M_b=cross(Dm,B); 

 

 
function [M_g] = GravForce(alt,I_z,I_y,theta) 
%Assuming cp_s is close to the panel cm 
%Magnetic Force Calculation 

  
M_g=3*3.986e14/(2*((6378+alt)*10^3)^3)*abs(I_z-I_y)*sin(2*theta*pi()/180); 

 

 
function [D] = dragVector(M_tot,cg,mass) 
 

F=[M_tot(2)/(0.15+cg/100),M_tot(1)/(0.15+cg/100)]; 
a=F/mass; 
s=1/2*a*60^2; 
D=[s(1),s(2),0.15]; 
D=D/norm(D); 
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function [M, M_d, t] = dragForce(D,n_h,P,A) 
%Assuming cp close to cm 

  
%Force Calculation 
a=500; %km 
r=a+6378; %km 
mu=396800;  
rho=1.4103065e-13; 
v=sqrt(mu/r); %m/s 
c_d=2.0; 
M_d=zeros(3,14); 
i=1; 
for i=1:14; 
t(i)=dot(n_h(:,i)',D); 
if t(i) < 0  
    F_d(i)=1/2*rho*v^2*c_d*A(i)*t(i); 
% elseif t(i) == -1 
%     F_d(i)=1/2*rho*v^2*c_d*A(i); 
elseif t(i) == 0 
     F_d(i)=0; 
else 
    F_d(i)=0; 
end 
M_d(:,i)=cross(P(:,i)',F_d(i)*n_h(:,i)')'; 
end 

  
M(1)=sum(M_d(1,:)); 
M(2)=sum(M_d(2,:)); 
M(3)=sum(M_d(3,:)); 
M=M'; 

 

 
function [M, M_d] = sunForce(S,n_h,P,A,Q) 
%Assuming cp_s is close to the panel cm 
%Force Calculation 
phi=1366; %W/m^2 
c=3*10^8; %m/s 

  
M_d=zeros(3,14); 
i=1; 
for i=1:14; 
t(i)=dot(n_h(:,i)',S); 
%t(i)=acos(t(i)/(norm(S)))*180/pi(); 
if t(i) < 0  
    F_s(i)=phi/c*A(i)*(1+Q(i))*t(i)/norm(S); 
    M_d(:,i)=cross(P(:,i)',F_s(i)*n_h(:,i)')'; 
% elseif t(i) == -1 
%     F_s(i)=phi/c*A(i)*t(i)*(1+Q(i)); 
elseif t(i) == 0 
     F_s(i)=0; 
     M_d(:,i)=[0,0,0]'; 
else 
    F_s(i)=0; 
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    M_d(:,i)=[0,0,0]'; 
end 

  
end 

  
M(1)=sum(M_d(1,:)); 
M(2)=sum(M_d(2,:)); 
M(3)=sum(M_d(3,:)); 
M=M'; 

 

 

 
%THIS WAS TAKEN FROM PROF. RIDLEY'S CODE 
%CADRE 
%All values are in S/C coordinates 
%units are in cm unless otherwise noted 

  
function [n_h,P,A,Q] = CADREsetup(a,l,r,cg) 

  
n=0.30; %m 
m=0.10; %m 
 %panel length (1=full panel 0.5=half etc) 

  

  
a=a*pi()/180; 

  

  
%\              +x 
% \              /\ 
%  \_____________||__________ 
%  |            (.)+y        |--->+z 
%  |_________________________|m   
%  /             n 

  
% ______________________________ 
%/             Earth             \ 

  
%Face Unit Normal vectors 
n_h = zeros(3,14); 
n_h(:,1) = [ 1  0  0]'; %+x 
n_h(:,2) = [-1  0  0]'; %-x 
n_h(:,3) = [ 0  1  0]'; %+y 
n_h(:,4) = [ 0 -1  0]'; %-y 
n_h(:,5) = [ 0  0  1]'; %+z 
n_h(:,6) = [ 0  0 -1]'; %-z 
n_h(:,7) = [cos(a)  0 sin(a)]'; %+x front 
n_h(:,8) = [-cos(a)  0 -sin(a)]'; %+x back 
n_h(:,9) = [-cos(a)  0 sin(a)]'; %-x front 
n_h(:,10) = [cos(a)  0 -sin(a)]'; %-x back 
n_h(:,11) = [ 0  cos(a) sin(a)]'; %+y front 
n_h(:,12) = [ 0  -cos(a) -sin(a)]'; %+y back 
n_h(:,13) = [ 0  -cos(a) sin(a)]'; %-y front 
n_h(:,14) = [ 0  cos(a) -sin(a)]'; %-y back 
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P = zeros(3,14); 
P(:,1) = [ 5  0  -cg]'; %+x 
P(:,2) = [-5  0  -cg]'; %-x 
P(:,3) = [ 0  5  -cg]'; %+y 
P(:,4) = [ 0 -5  -cg]'; %-y 
P(:,5) = [ 0  0  15-cg]'; %+z 
P(:,6) = [ 0  0 -15-cg]'; %-z 
P(:,7) = [5+15*sin(a)  0 -15-cg-15*cos(a)]'; %+x front 
P(:,8) = [5+15*sin(a)  0 -15-cg-15*cos(a)]'; %+x back 
P(:,9) = [-5-15*sin(a)  0 -15-cg-15*cos(a)]'; %-x front 
P(:,10) = [-5-15*sin(a)  0 -15-cg-15*cos(a)]'; %-x back 
P(:,11) = [0 5+15*sin(a) -15-cg-15*cos(a)]'; %+y front 
P(:,12) = [0 5+15*sin(a) -15-cg-15*cos(a)]'; %+y back 
P(:,13) = [0 -5-15*sin(a) -15-cg-15*cos(a)]'; %-y front 
P(:,14) = [0 -5-15*sin(a) -15-cg-15*cos(a)]'; %-y back 

  
T=[cos(r),sin(r),0;-sin(r),cos(r),0;0,0,1]^-1; 

  
for i=1:14 
    n_h(:,i)=T*n_h(:,i); 
    P(:,i)=T*P(:,i); 
end 

  

  
A = zeros(1,14); 
A(:,1) = n*m; %+x 
A(:,2) = n*m; %-x 
A(:,3) = n*m; %+y 
A(:,4) = n*m; %-y 
A(:,5) = m*m; %+z 
A(:,6) = m*m; %-z 
A(:,7) = n*m*l; %+x front 
A(:,8) = n*m*l; %+x back 
A(:,9) = n*m*l; %-x front 
A(:,10) = n*m*l; %-x back 
A(:,11) = n*m*l; %+y front 
A(:,12) = n*m*l; %+y back 
A(:,13) = n*m*l; %-y front 
A(:,14) = n*m*l; %-y back 

  
sp=0.5; 
mli=0.5; 
Q = zeros(1,14); 
Q(:,1) = sp; %+x 
Q(:,2) = mli; %-x 
Q(:,3) = sp; %+y 
Q(:,4) = mli; %-y 
Q(:,5) = mli; %+z 
Q(:,6) = mli; %-z 
Q(:,7) = sp; %+x front 
Q(:,8) = mli; %+x back 
Q(:,9) = sp; %-x front 
Q(:,10) = mli; %-x back 
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Q(:,11) = sp; %+y front 
Q(:,12) = mli; %+y back 
Q(:,13) = sp; %-y front 
Q(:,14) = mli; %-y back 

  

  

 

 

 

 


